Abstract:
Provided is a heat exchange element that suppresses an increase in air-flow resistance by suppressing deflection of a partition member caused by a change in temperature and humidity. The unit constituent members are stacked, each of which is formed of partition members that have heat-transfer properties and moisture permeability, and spacing members that hold the partition members. A primary air flow that passes along an upper-surface side of the partition member and a secondary air flow that passes along an undersurface side of the partition member cross each other so as to exchange heat and moisture via the partition member. The spacing member includes: spacing ribs that maintain the spacing between the partition members; and deflection suppressing ribs that have a height smaller than the spacing ribs so as to suppress deflection of the partition members.
Abstract:
The present invention relates to a heat exchange element in which unit constituent members, each of which includes a partition member that has a heat-transfer property and a moisture permeability and a spacing member that holds the partition member with a predetermined spacing, are stacked and in which a primary air flow that passes along an upper surface side of the partition member and a secondary air flow that passes along an undersurface side of the partition member and crosses the primary air flow exchange heat and moisture through the partition member, wherein a detachment suppressing rib is provided on the opposite side of the spacing member when viewed from the partition member at a bonded portion between the partition member and the spacing member, and the partition member is sandwiched by the spacing member and the detachment suppressing rib.
Abstract:
An axial flow fan, with which effective work of blades is ensured and blade tip vortices are suppressed, thereby reducing noise. The axial flow fan includes blades, which are each formed such that a chord centerline connecting chord center points from inner to outer peripheral ends of the blade is curved so as to protrude toward a downstream side in a whole region.
Abstract:
A display device includes a substrate having light emitting elements for display on a front surface; a substrate supporting body having an opening in the center and positioned on the back surface side of the substrate to support a peripheral region of the substrate; a case body positioned on the back surface side of the substrate supporting body and covering a part of the center opening; a fan unit arranged in the case body; a wind path plate arranged between the fan unit and the back surface of the substrate and forming a wind path to pass airflow generated by driving the fan unit only on the back surface side of the substrate; and a power supply arranged in the case body and on the back surface of the wind path plate; and wherein the airflow impinges the wind path plate through the fan, thereafter passes through the wind path and is discharged to the outside from the back side of the wind path plate. According to the present invention, it is possible to cool down a substrate uniformly and efficiently in a display device using light emitting elements arranged on the substrate without raising cost or complicating the structure.
Abstract:
An axial flow fan, with which effective work of blades is ensured and blade tip vortices are suppressed, thereby reducing noise. The axial flow fan includes blades, which are each formed such that a chord centerline connecting chord center points from inner to outer peripheral ends of the blade is curved so as to protrude toward a downstream side in a whole region.
Abstract:
Provided is a heat exchange element that suppresses an increase in air-flow resistance by suppressing deflection of a partition member caused by a change in temperature and humidity. The unit constituent members are stacked, each of which is formed of partition members that have heat-transfer properties and moisture permeability, and spacing members that hold the partition members. A primary air flow that passes along an upper-surface side of the partition member and a secondary air flow that passes along an undersurface side of the partition member cross each other so as to exchange heat and moisture via the partition member. The spacing member includes: spacing ribs that maintain the spacing between the partition members; and deflection suppressing ribs that have a height smaller than the spacing ribs so as to suppress deflection of the partition members.
Abstract:
In a stationary induction apparatus, an inter-partial-coil insulating plate and a plurality of inter-partial-coil spacer insulators form a refrigerant flow path in conjunction with each other. A space having an inter-partial-coil insulation dimension for withstanding an abnormal voltage is formed between a pair of partial coils. The inter-partial-coil insulating plate and the inter-partial-coil spacer insulators support both the pair of partial coils at an insulated state so as to maintain the inter-partial-coil insulation dimension. The insulators are arranged so as to be overlapped with each other in the direction in which mutually adjacent partial coils are opposed to each other.
Abstract:
An air duct plate is provided on the back of a substrate on the surface of which a light emitting element group for display as well as an integrated circuit are disposed; a fan acts to send an air into a space surrounded by a case body extending over and around the air duct plate and the air duct plate; and a plurality of openings acting to blow a cooling air having been generated by the fan to a predetermined portion on the side of the substrate are formed in the air duct plate.
Abstract:
In fabricating an X-ray mask, a chromium oxide film serving as an etching stopper is formed on a diamond film serving as an X-ray transmitter. Then, a diamond layer serving as a first X-ray absorber is formed on the chromium oxide film. Thereafter, a tungsten layer serving as a second X-ray absorber is formed on the diamond layer. Consequently, the diamond layer and the tungsten layer form an X-ray absorber having a laminated structure. When the X-ray absorber has a laminated structure including substances having different compositions, the transmittance and the phase shift quantity of the overall X-ray absorber can be readily adjusted. Thus, a method of fabricating an X-ray mask providing improved resolution of the pattern of a semiconductor device or the like is obtained.
Abstract:
An X-ray mask including a transfer pattern having high accuracy is obtained. In a method of manufacturing the X-ray mask, an X-ray absorber film preventing transmission of an X-ray is formed on a substrate. A resist film is formed on the X-ray absorber film. The substrate is placed on a movable member. Steps of moving the movable member and irradiating the resist film with an energy beam are repeated for carrying out a drawing step of drawing a pattern on the resist film. Between the step of placing the substrate on the movable member and the drawing step, a step of holding a mask member including the resist film, the X-ray absorber film and the substrate to be in a state substantially identical to thermal equilibrium in the drawing step is carried out.