Abstract:
The present invention provides a radio frequency power amplifier which may not introduce radio frequency loss during switching power amplifier units between high and low output power levels. By connecting a first-stage matching network M12 and first-stage matching network M13 to respective output nodes of a power amplifier unit A11 and power amplifier unit A12 that either one operate by switching, connecting the output nodes of the first-stage matching network M12 and M13 in parallel, connecting a last-stage matching network M11 between the junction of M12 and M13 and the output terminal OUT, the first-stage matching networks M12, M13, and last-stage matching network M11 are formed, for both power amplifier units A11 and A12, so that impedance matching is established between the output terminal OUT and the power amplifier unit in operation when one unit is in operation the other is in stop of operation. The present invention allows switching from one power amplifier unit to the other without the need of a radio frequency switch.
Abstract:
A radio frequency power amplifier module that brings sufficient attenuation to a radio frequency signal in a bias supply line connecting a bias control part and a radio frequency power amplifier part without increasing module substrate area is aimed. At least one bonding pad 106 having a capacitance component to a ground and stitch structure inductances 108, 109 composed of a bonding wire 105 provided via the bonding pad are provided in the bias supply line connecting the bias control part and the radio frequency power amplifier part.
Abstract:
The present invention provides a radio frequency power amplifier which may not introduce radio frequency loss during switching power amplifier units between high and low output power levels. By connecting a first-stage matching network M12 and first-stage matching network M13 to respective output nodes of a power amplifier unit A11 and power amplifier unit A12 that either one operate by switching, connecting the output nodes of the first-stage matching network M12 and M13 in parallel, connecting a last-stage matching network M11 between the junction of M12 and M13 and the output terminal OUT, the first-stage matching networks M12, M13, and last-stage matching network M11 are formed, for both power amplifier units A11 and A12, so that impedance matching is established between the output terminal OUT and the power amplifier unit in operation when one unit is in operation the other is in stop of operation. The present invention allows switching from one power amplifier unit to the other without the need of a radio frequency switch.
Abstract:
The present invention provides a radio frequency power amplifier which may not introduce radio frequency loss during switching power amplifier units between high and low output power levels. By connecting a first-stage matching network M12 and first-stage matching network M13 to respective output nodes of a power amplifier unit A11 and power amplifier unit A12 that either one operate by switching, connecting the output nodes of the first-stage matching network M12 and M13 in parallel, connecting a last-stage matching network M11 between the junction of M12 and M13 and the output terminal OUT, the first-stage matching networks M12, M13, and last-stage matching network M11 are formed, for both power amplifier units A11 and A12, so that impedance matching is established between the output terminal OUT and the power amplifier unit in operation when one unit is in operation the other is in stop of operation. The present invention allows switching from one power amplifier unit to the other without the need of a radio frequency switch.
Abstract:
A CDMA system is provided which includes a power amplifier module have a DC current amplifier. The DC and current amplifier detects a DC component of an input signal and amplifies this detected DC component. The power amplifier module also includes an amplifier which receives the current amplified by the DC current amplifier as an input current. The input signal supplied to the DC current amplifier changes in response to an input power level.
Abstract:
A high-frequency power amplifier comprising: a plurality of power amplifiers arranged in parallel; an inductance element inserted in series in an input signal line of said each power amplifier; an input matching circuit for performing matching of inputs of a parallel connection which connected each series connection of said power amplifier and said inductance element in parallel; an output matching circuit for performing matching of outputs of the parallel connection; and a control unit for controlling said power amplifiers in such a manner that one of said power amplifiers is always brought to an operation condition and the remainder of said power amplifiers are brought to an operation or non-operation condition.
Abstract:
This invention is intended to provide an HBT capable of achieving, if the HBT is a collector-up HBT, the constriction of the emitter layer disposed directly under an external base layer, and reduction in base-emitter junction capacity, or if the HBT is an emitter-up HBT, reduction in base-collector junction capacity. For the collector-up HBT, window structures around the sidewalls of a collector are used to etch either the emitter layer disposed directly under the external base layer, or an emitter contact layer For the emitter-up HBT, window structures around the sidewalls of an emitter are used to etch either the collector layer disposed directly under the external base layer, or a collector contact layer. In both HBTs, the external base layer is supported by a columnar structure to ensure mechanical strength.
Abstract:
Disclosed is a power amplifier having highly stable and excellent controllability, and having low noise in comparison with conventional power amplifiers. With the power amplifier, a differential amplifier made up of transistors Q1, Q2 is provided in the initial stage thereof, and baluns doubling as inter-stage matching circuits, comprised of Cp1, Cp2, Lp1, and Ct1, Ct2, Lt1, respectively, are provided between the initial stage, and a second stage while an unbalanced single-ended circuit is provided in the second stage. The differential amplifier has an emitter-coupled type configuration for coupling both emitters with each other, and output control of the amplifier in the initial stage is executed by varying current of a current source coupled to both the emitters.
Abstract:
A high-frequency power amplifier comprising: a plurality of power amplifiers arranged in parallel; an inductance element inserted in series in an input signal line of said each power amplifier; an input matching circuit for performing matching of inputs of a parallel connection which connected each series connection of said power amplifier and said inductance element in parallel; an output matching circuit for performing matching of outputs of the parallel connection; and a control unit for controlling said power amplifiers in such a manner that one of said power amplifiers is always brought to an operation condition and the remainder of said power amplifiers are brought to an operation or non-operation condition.
Abstract:
The present invention provides a radio frequency power amplifier which may not introduce radio frequency loss during switching power amplifier units between high and low output power levels. By connecting a first-stage matching network M12 and first-stage matching network M13 to respective output nodes of a power amplifier unit A11 and power amplifier unit A12 that either one operate by switching, connecting the output nodes of the first-stage matching network M12 and M13 in parallel, connecting a last-stage matching network M11 between the junction of M12 and M13 and the output terminal OUT, the first-stage matching networks M12, M13, and last-stage matching network M11 are formed, for both power amplifier units A11 and A12, so that impedance matching is established between the output terminal OUT and the power amplifier unit in operation when one unit is in operation the other is in stop of operation. The present invention allows switching from one power amplifier unit to the other without the need of a radio frequency switch.