Abstract:
For anion analysis, the method includes: (a) flowing an aqueous liquid sample stream containing anions to be detected and cation hydroxide through a separator bed, (b) flowing the aqueous effluent from the separator bed through a flow-through suppressor, (c) flowing the effluent liquid from the suppressor past a detector, (d) recycling said liquid effluent from the detector through a cathode chamber proximate to the suppressor bed and separated by a first barrier, and (e) applying an electrical potential between the cathode and the anode. Water is electrolyzed at the anode to cause cations on the cation exchange resin to electromigrate toward the barrier and to be transported across the barrier toward the cathode while water in the cathode chamber is electrolyzed to generate hydroxide ions which combine with the transported cations to form cation hydroxide in the cathode chamber.
Abstract:
An apparatus for generating high purity acid or base in an aqueous stream for use in analysis. For generating a base, the aqueous stream is directed through a cation exchange bed having first strongly acidic and second weakly acidic portions. An electrical potential is applied to the bed. Cations on the bed electromigrate into the aqueous stream while hydroxide ions are electrolytically generated to form a base-containing eluent. Analytes to be detected and the generated eluent flow through a detector.
Abstract:
A method and apparatus for generating an acid or base eluent in an aqueous stream solely from an ion exchange bed for liquid chromatography of anions or cations and for simultaneously suppressing conductivity of the eluent in the ion exchange bed after chromatographic separation. For a system in which a base is generated for the analysis of anions by ion chromatography, the method uses a bed of cation exchange material with first and second bed sections arranged in series. For anion analysis, the method includes:(a) flowing an aqueous feed stream through the first bed section while applying an electrical potential to form an aqueous eluent stream comprising a cation hydroxide base,(b) flowing a liquid sample stream containing anions to be detected and the eluent through a chromatographic separator portion of said first bed section, to separate said anions to be detected,(c) flowing said aqueous separated anion stream through said second bed section substantially free of anion exchange material and including exchangeable hydronium ions, while applying an electrical potential to convert said base to weakly ionized form, and displacing some of said exchangeable hydronium ions with cations from said base, cations electromigrating from said second bed section to said first bed section in the opposite direction to said aqueous feed stream to replenish exchangeable cations displaced from said first bed in step (a), and(d) flowing said suppressor effluent stream past a detector in which the separated anions in said suppressor effluent are detected.
Abstract:
A continuous electrochemical pump comprising a water generator compartment, an anode compartment on one side of said generator compartment, a cation exchange barrier, separating the generator compartment from the anode compartment, it first electrode in electrical communication with the anode compartment, a cathode compartment adjacent the generator chamber, an anion exchange barrier, separating the generation compartment from the cathode compartment, and a second electrode in electrical communication with the cathode compartment. Use of the pump as a sample concentrator. A feedback loop for the pump. A reservoir, with or without an intermediate piston, on the output side of the pump.
Abstract:
A continuous electrochemical pump comprising a water generator compartment, an anode compartment on one side of said generator compartment, a cation exchange barrier, separating the generator compartment from the anode compartment, a first electrode in electrical communication with the anode compartment, a cathode compartment adjacent the generator chamber, an anion exchange barrier, separating the generation compartment from the cathode compartment, and a second electrode in electrical communication with the cathode compartment. Use of the pump as a sample concentrator. A feedback loop for the pump. A reservoir, with or without an intermediate piston, on the output side of the pump.
Abstract:
Method and apparatus for generating an acid or base, e.g. for chromatographic analysis of anions. For generating a base the method includes the steps of providing a cation source in a cation source reservoir, flowing an aqueous liquid stream through a base generation chamber separated from the cation source reservoir by a barrier (e.g. a charged membrane) substantially preventing liquid flow while providing a cation transport bridge, applying an electric potential between an anode cation source reservoir and a cathode in the base generation chamber to electrolytically generate hydroxide ions therein and to cause cations in the cation source reservoir to electromigrate and to be transported across the barrier toward the cathode to combine with the transported cations to form cation hydroxide, and removing the cation hydroxide in an aqueous liquid stream as an effluent from the first base generation chamber. Suitable cation sources include a salt solution, a cation hydroxide solution or cation exchange resin.
Abstract:
An electrolytic suppressor including (a) packing (a suppressor bed of ion exchange resin or a flow-through monolith), (b) an electrode chamber adjacent the suppressor, (c) a first electrode in the electrode chamber, (d) a barrier separating the packing from the first electrode chamber preventing significant liquid flow but permitting transport of ions only of the same charge as the packing, (e) a second electrode in electrical communication with the resin bed, and (f) a recycle conduit between the suppressor outlet port and said electrode chamber. Charged transverse partitions with openings may be included to create a serpentine liquid path. For anion analysis, the method of using the apparatus includes: (a) flowing an aqueous liquid sample stream containing anions to be detected and cation hydroxide through the separator bed, (b) flowing the aqueous effluent from the separator bed through the flow-through packing, (c) flowing the effluent liquid from the suppressor past a detector, (d) recycling said liquid effluent from the detector through a cathode chamber proximate to the packing and separated by the first barrier, and (e) applying an electrical potential between the cathode and the anode. Water is electrolyzed at the anode to cause cations on the cation exchange packing to electromigrate toward the barrier and to be transported across the barrier toward the cathode while water in the cathode chamber is electrolyzed to generate hydroxide ions which combine with the transported cations to form cation hydroxide in the cathode chamber.
Abstract:
A method and apparatus for ion analysis by ion chromatography uses periodic electrolytic regeneration of a packed bed suppressor. First and second sets of columns, suppressors and detectors connected in series are linked by appropriate valving so that the effluent from the second suppressor can be passed to the first suppressor to be used in the electrolytic regeneration of the first suppressor after detection of analyte in the second detector.
Abstract:
An ion exchange composition comprising an insoluble substrate of a synthetic resin having ion exchanging sites at least on its available surface; and a finely divided, insoluble material comprising synthetic resin particles of from about 0.1 to about 5 microns median diameter (with respect to volume) having, at least on their outer surfaces, ion exchanging sites which attract the ion exchanging sites of the substrate, irreversibly attached as a monolayer to the available surface of the substrate. The composition is used for removal and separation of ions, and is especially useful in liquid ion exchange chromatography. For example, a chromatographic separation of halide ions is effected with high speed and resolution by contacting an aqueous solution thereof with a bed of the ion exchange composition which consists of surface sulfonated resin beads of a styrene-divinylbenzene copolymer to the surface of which is irreversibly attached a monolayer of quaternary ammonium-bearing styrene-divinylbenzene copolymer resin particles in the hydroxy form, and then eluting the bed with an aqueous sodium hydroxide solution.
Abstract:
A process for high performance, cation-exchange chromatography employing a cation-exchange composition comprising synthetic resin particles of about 5 to about 200 microns particle size, said synthetic resin particles being cross-linked to from about 0.25 to about 5% and surface-sulfonated to a calculated depth of about 100 to about 300 Angstroms is disclosed.