Abstract:
A molded body formed of a silicon nitride-based ceramic containing Si and N and optionally O, C and/or a metal. The ceramic is formed from a polysilazane. A molded body may be a composite body which is composed of a matrix of the ceramic and a reinforcing material such as powder or fiber embedded within the matrix or which is composed of ceramic powder bound with a binder formed of the silicon nitride-based ceramic.
Abstract:
Novel polysiloxazanes comprising --SiH.sub.2).sub.n NH] and --SiH.sub.2).sub.m O] as the main repeating units are provided. The polysiloxazanes are produced by reacting a dihalosilane or an adduct thereof with a Lewis base, with ammonia and water vapor or oxygen. From the polysiloxazane, novel silicon oxynitride shapes can be produced and the silicon oxynitride shapes are essentially composed of silicon, nitride (5 mol % or more) and oxygen (5 mol % or more).
Abstract:
A novel, reformed polysilazane obtained by reacting a polysilazane with a compound selected from ammonia, primary and secondary amines, hydrazine and mono-, di- and tri-substituted hydrazines to cross-link the polysilazane with the compound serving as a cross-linking agent or to link the compound to the polysilazane.
Abstract:
Novel polysiloxazanes comprising [(SiH.sub.2).sub.n NH] and [(SiH.sub.2).sub.m O] as the main repeating units are provided. The polysiloxazanes are produced by reacting a dihalosilane or an adduct thereof with a Lewis base, with ammonia and water vapor or oxygen. From the polysiloxazane, novel silicon oxynitride shapes can be produced and the silicon oxynitride shapes are essentially composed of silicon, nitride (5 mol % or more) and oxygen (5 mol % or more).
Abstract:
A novel, reformed, inorganic polysilazane which is liquid or solid at room temperature and soluble in o-xylene at room temperature and which has (a) a number-average molecular weight of 200-500,000, (b) contents of Si, N and H of 50-70% by weight, 20-34% by weight and 5-9% by weight, respectively; and (c) --SiH.sub.2 -- and --SiH.sub.3 groups, the molar ratio of the --SiH.sub.2 -- groups to the --SiH.sub.3 groups being 2.0:1 to 8.4:1. The reformed polysilazane is obtained by reaction of a solution of a polysilazane in an organic base-containing solvent to polycondense the polysilazane.
Abstract:
Novel primarily chain inorganic polysilazanes of average molecular weight of 690 to 2000 are prepared from novel adducts of a halosilane and a base by reacting the adducts with ammonia in unreactive solvents. Silicon nitride is prepared by heating the polysilazanes at 1000.degree. to 1600.degree. C., preferably below 1300.degree. C., most preferably 1000.degree. to 1100.degree. C.
Abstract:
Attachments are respectively attached to one ends of a pair of light guides, which are integrally formed via a connecting portion, such that the attachments surround the one ends of the light guides. The one ends protrude from a rear face of a receptacle body and are opposed to a light-emitting device and a light-receiving device, respectively. The attachments are inserted and positioned in guide holes formed respectively on the light-emitting device and the light-receiving device, and the optical axes of the pair of light guides and the optical axes of the light-emitting device and the light-receiving device are aligned with each other.
Abstract:
The object of the present invention is to suppress a decrease in the optical function of a sleeve by ensuring that a liquid chemical substance is not apt to remain on a peripheral surface of the sleeve even when the liquid chemical substance enters a connector. The present invention relates to an optical connector which is connected to an optical plug holding an optical fiber to a terminal end of which a ferrule is attached. The optical connector of the present invention has a guide pipe into which a ferrule is inserted and on an inner circumferential surface of which a supporting portion (a convexity) is formed, a light-emitting device, a light-receiving device, and a sleeve which is positioned by the supporting portion and optically connects the light-emitting device, the light-receiving device and the optical fiber. According to the present invention, there is a space between the guide pipe and the sleeve and, therefore, the phenomenon that a chemical substance adheres to a wide area and remains does not occur.
Abstract:
A first embodiment of the invention relates to novel carbapenem compounds, (1R, 5S, 6S)-2-�1-(1,3-thiazolin-2-yl)azetidin-3-yl!thio-6-�(R)-1-hydroxy-ethyl!-1-methylcarbapen-2-em-3-carboxyic acid derivatives. These carbapenem compounds are represented by the following formula having a beta-coordinated methyl group introduced at the 1-position and a �1-(1,3-thia-zolin-2-yl)azetidin-3-yl!thio group introduced at the 2-position. ##STR1## In the formula, R is hydrogen; lower alkyl group which is unsubstituted or substituted by hydroxy, lower alkoxy or lower alkoxy-lower alkoxy group; group --COOR.sup.1 (R.sup.1 is hydrogen or lower alkyl group); or group --CONR.sup.2 R.sup.3 (R.sup.2 and R.sup.3 are, independently each other, hydrogen or lower alkyl), and Y is carboxy, --COO.sup..crclbar. or protected carboxy. These compounds are useful antibiotics for prevention and treatment of bacterial infections. The second embodiment of the invention relates to 3-mercapto-1-(1,3-thiazolin-2-yl)azetidine represented by the following formula and its acid addition salts ##STR2## and to the production process therefor. The above compounds are useful as intermediates for preparing carbapenem compounds, which have strong antibacterial activity, with convenience and high yield.
Abstract:
A preceramic polymetalosilazane substantially free of Si-O groups is produced by reacting a polysilazane with a metal alkoxide in the presence of an alkylsilazane or alkylsilane. The preceramic polymer gives a high strength and heat resistant ceramic body which remains amorphous when calcined at 1,600.degree. C. for 10 hours in the atmosphere of nitrogen.