Abstract:
A core information receiving section of an information processing device receives information related to the state of a core from a first block of a block set assembled by a user. A structure analyzing section identifies the shape, posture, and position of the block set on the basis of an image photographed by a camera and the information related to the state of the core. An information processing section performs predetermined information processing according to the shape, posture, and position of the block set or an operation on an input device by the user. A display processing section generates an image to be displayed as a result of the information processing, and outputs the image to a display device. A driving control section transmits a signal for controlling the operation of the block set.
Abstract:
An image of a block or the like entering a space above a play mat is picked up by an image pickup apparatus, and an information processing apparatus detects and recognizes the block on the basis of a picture of the block in a picked up image and performs information processing. The play mat includes a play field that defines a detection space for the block, and a calibration chart including at least a plurality of regions of colors of different luminances. The image pickup apparatus adjusts an exposure time period, a gain value for each color component and a correction rule upon gamma correction on the basis of the picture of the calibration chart in the picked up image.
Abstract:
A block set assembled by a user and an information processing device communicate with each other. The information processing device thereby obtains information on the structure of the block set. In addition, an object of a crane truck corresponding to the block set is displayed on a display device. Correspondences between joints and wheels and correspondences between movements are set. Thereby, when the block set is moved, the movement of the block set is reflected in the object on display. When the object is moved, the movement of the object is reflected in the block set by transmitting a control signal from the information processing device.
Abstract:
An image of a block or the like entering a space above a play mat is picked up by an image pickup apparatus, and an information processing apparatus detects and recognizes the block on the basis of a picture of the block in a picked up image and performs information processing. The play mat includes a play field that defines a detection space for the block, and a calibration chart including at least a plurality of regions of colors of different luminances. The image pickup apparatus adjusts an exposure time period, a gain value for each color component and a correction rule upon gamma correction on the basis of the picture of the calibration chart in the picked up image.
Abstract:
A block system 1 includes a block 102 and a host terminal 10. The block 102, configured such that two or more blocks are connectable with each other, includes a power supply mechanism 110 for supplying power to the block 102, a communication mechanism 114 for establishing connection with the host terminal 10 to transmit and receive various signals, a storage mechanism 112 for storing identification information related with the block 102, a display mechanism 118 for emitting light and displaying an image under the control of the host terminal 10, and a control mechanism 116 for executing programmed processing in accordance with a signal from the host terminal 10.
Abstract:
On a play field 20 set in real space, a target region 102 having the play field 20 as a bottom surface and having a predetermined height h is set virtually. A target region image that expresses a distance of the target region 102 from an imaging surface as a pixel value on an image plane is generated, and compared with a depth image corresponding to an actual captured image 100; thus, only images of blocks 3c and 3b inside the target region 102 are extracted as detection and tracking targets.
Abstract:
A block system 1 includes a block 102 and a host terminal 10. The block 102, configured such that two or more blocks are connectable with each other, includes a power supply mechanism 110 for supplying power to the block 102, a communication mechanism 114 for establishing connection with the host terminal 10 to transmit and receive various signals, a storage mechanism 112 for storing identification information related with the block 102, a display mechanism 118 for emitting light and displaying an image under the control of the host terminal 10, and a control mechanism 116 for executing programmed processing in accordance with a signal from the host terminal 10.