Abstract:
Disclosed herein are power amplification (PA) systems configured to amplify a signal, such as a radio-frequency signal. The PA system includes a plurality of power amplifiers that are configured to amplify a signal received at a signal input and to output the amplified signal at a signal output. The power amplifiers are configured to receive a supply voltage that is a combination of a battery voltage and an envelope tracking signal. The PA system includes a PA controller configured to control the power amplifiers based at least in part on the battery voltage or a power output of the power amplifiers. The PA controller can be configured to alter impedance matching components of the PA system to reconfigure a load line of the power amplifiers.
Abstract:
Disclosed herein are power amplification (PA) systems configured to amplify a signal, such as a radio-frequency signal. The PA system includes a plurality of power amplifiers that are configured to amplify a signal received at a signal input and to output the amplified signal at a signal output. The power amplifiers are configured to receive a supply voltage that is a combination of a battery voltage and an envelope tracking signal. The PA system includes a PA controller configured to control the power amplifiers based at least in part on the battery voltage or a power output of the power amplifiers. The PA controller can be configured to alter impedance matching components of the PA system to reconfigure a load line of the power amplifiers.
Abstract:
Transformer-based Doherty power amplifier (PA). In some embodiments, a Doherty PA can include a carrier amplification path having an output that includes a carrier transformer, and a peaking amplification path having an output that includes a peaking transformer. The Doherty PA can further include a combiner configured to combine the outputs of the carrier and peaking amplification paths into an output node. The combiner can include a quarter-wave circuit implemented between the carrier and peaking transformers.
Abstract:
Disclosed herein are power amplification (PA) systems configured to amplify a signal, such as a radio-frequency signal. The PA system includes a plurality of power amplifiers that are configured to amplify a signal received at a signal input and to output the amplified signal at a signal output. The power amplifiers are configured to receive a supply voltage that is a combination of a battery voltage and an envelope tracking signal. The PA system includes a PA controller configured to control the power amplifiers based at least in part on the battery voltage or a power output of the power amplifiers. The PA controller can be configured to alter impedance matching components of the PA system to reconfigure a load line of the power amplifiers.
Abstract:
Radio-frequency (RF) switch circuits are disclosed providing improved switching performance. An RF switch system includes a plurality of field-effect transistors (FETs) connected in series between first and second nodes, each FET having a gate and a body. A compensation network including a gate-coupling circuit couples the gates of each pair of neighboring FETs. The compensation network may further including a body-coupling circuit that couples the bodies of each pair of neighboring FETs.
Abstract:
Radio-frequency (RF) switch circuits are disclosed having one or more transistors coupled to provide improved harmonic management. The RF switch circuits including at least one field-effect transistor (FET) disposed between first and second nodes, each of the at least one FET having a respective body and gate. A coupling circuit can be configured to couple the respective body and gate of each of the at least one FET. The coupling circuit can include a capacitor electrically parallel with a diode.