Abstract:
A method for registering multiple 3D point sets by determining optimal relative positions and orientations of the 3D point sets. Initial values are determined for the rotation matrices corresponding to the relative orientations of reference frames of the 3D point sets. A registration error cost function is optimized on a product manifold of all of the rotation matrices to determine optimal values of the rotation matrices. The optimal values of the rotation matrices are used to determine optimal values for translation vectors corresponding to the relative positions of the reference frames of the 3D point sets. The 3D point sets are registered on a common reference frame using the optimal rotation matrices and the optimal translation vectors.
Abstract:
A method includes receiving an image having a first resolution and generating an upsampled image having a second resolution based on the image. A multi-dimensional data structure corresponding to a multi-dimensional image space is generated from the upsampled image. Each node of the data structure is determined based on a weighted sum of values of one or more pixels in the upsampled image. Each of the one or more pixels corresponds to a pixel in the received image and is located within a region of the image space having a vertex defined by the node. A filter modifies the values of the nodes and a second upsampled image is generated based on the modified values of the nodes. Each pixel of the second upsampled image not corresponding to a pixel in the received image is determined based on a weighted sum of the modified values of one or more nodes.
Abstract:
A method to calibrate a polarizer in polarized optical system at any angle of incidence, by decoupling the calibration from a polarization effect of the system, by providing a calibration apparatus that includes a substrate having a polarizer disposed on a surface thereof, with an indicator on the substrate for indicating a polarization orientation of the polarizer, loading the calibration apparatus in the polarized optical system with the indicator in a desired position, determining an initial angle between the polarization orientation and a reference of the polarized optical system, acquiring spectra using the polarized optical system at a plurality of known angles between the polarization orientation and the reference of the polarized optical system, using the spectra to plot a curve indicating an angle of the polarizer in the polarized optical system, and when the angle of the polarizer is outside of a desired range, adjusting the angle of the polarizer, and repeating the steps of acquiring the spectra, and plotting a curve indicating the angle of the polarizer.
Abstract:
An optical method and system for measuring characteristics of a sample using a broadband metrology tool in a purge gas flow environment are disclosed. In the method a beam path for the metrology tool is purged with purge gas at a first flow rate. A surface of the sample is illuminated by a beam of source radiation having at least one wavelength component in a vacuum ultraviolet (VUV) range and/or at least one wavelength component in an ultraviolet-visible (UV-Vis) range. A flow rate of a purge gas is adjusted between the first flow rate for metrology measurements made when the source radiation is in the VUV spectral region and a second flow rate for metrology measurements made when the source radiation is in the UV-Vis spectral region. The system includes a light source, illumination optics, collection optics, detector, a purge gas source and a controller. The purge gas source is configured to supply a flow of purge gas to a beam path in the light source and/or illumination optics and/or sample and/or collection optics and/or detector. The controller is configured to control a flow rate of the purged gas flow in response to an output signal from the detector.
Abstract:
A method of performing a measurement of properties of a sample, by directing a first beam of light at the sample, where a combination of the wavelength, energy, and length of time is sufficient to cause temporary damage to the sample. The first beam is reflected from the sample. The properties of the reflected beam are sensed to create a signal. A length of time is waited, sufficient for the damage to substantially heal, before a second beam of light is directed at the sample, where a combination of the wavelength, energy, and length of time is sufficient to cause temporary damage to the sample. The second beam is reflected from the sample. The properties of the reflected beam are sensed to create a signal. The first and second electrical signals are analyzed to determine the properties of the sample.
Abstract:
In a device for measuring the complete polarization state of light over a spectral bandwidth, an optical input signal (41) with wavelengths of light within a spectral band is incident on two or more diffraction gratings (42, 44, 46, 48), or incident from at least two directions on one or more diffraction gratings (72, 74), and the intensity is measured as a function of wavelength for at least four of the diffraction spectra produced by the grating(s). The polarization state of light is then calculated as a function of wavelength over the spectral bandwidth from the intensity measurements.
Abstract:
A system for performing single wavelength ellipsometry (SWE) on a thin film on a multi-layer substrate such as silicon-on-insulator (SOI) applies a measurement beam having an absorption distance less than the thickness of the superficial layer of the multi-layer substrate. For example, for an SOI substrate, the measurement beam is selected to have a wavelength that results in an absorption distance that is less than the superficial silicon layer thickness. The system can include a cleaning laser to provide concurrent cleaning to enhance measurement accuracy without negatively impacting throughput. The measurement beam source can be configured to provide a measurement beam at one wavelength and a cleaning beam at a longer wavelength, so that the absorption depth of the measurement beam is less than the superficial layer thickness while the absorption depth of the cleaning beam is greater than the superficial layer thickness.
Abstract:
In a device for measuring the complete polarization state of light over a spectral bandwidth, an optical input signal (41) with wavelengths of light within a spectral band is incident on two or more diffraction gratings (42, 44, 46, 48), or incident from at least two directions on one or more diffraction gratings (72, 74), and the intensity is measured as a function of wavelength for at least four of the diffraction spectra produced by the grating(s). The polarization state of light is then calculated as a function of wavelength over the spectral bandwidth from the intensity measurements.
Abstract:
An apparatus for measuring a thickness of a substrate having an upper surface, without contacting the upper surface of the substrate. A platen having a base surface receives the substrate, and a reference surface is disposed at a known first height from the platen surface. A non contact sensor senses the known first height of the reference surface without making physical contact with the reference surface. The non contact sensor further senses a relative difference between the known first height of the reference surface and a second height of the upper surface of the substrate without making physical contact with the upper surface of the substrate. A controller controls the sensor and determines the thickness of the substrate based at least in part on the known first height of the reference surface and the relative difference between the known first height of the reference surface and the second height of the upper surface of the substrate.
Abstract:
An apparatus that interfaces thermal transfer components is described. The apparatus includes a soft, thermally conductive metal that enables a capillary flow path with a contact surface of a thermal transfer component and an imbibing thermal interface material. The thermal transfer component is a heat sink. The thermally conductive metal includes large pores that intertwine with smaller pores of the contact surface.