Abstract:
A camshaft adjuster (4) including a stator (20) and a rotor (22) which is received in the stator (20) and which can be rotated relative to the stator (20) by a pressure chamber (44), a pressure interface (46, 80) for supplying hydraulic liquid to the pressure chamber (44), and an outflow interface (78) for the discharge of the hydraulic liquid from the pressure chamber (44). The camshaft adjuster (4) also has a third interface (82) for filling the pressure chamber (44) with hydraulic liquid from a volume accumulator (47).
Abstract:
A sliding cam actuator for a sliding cam system, including a housing defining a housing interior, and at least one coil former having a winding for generating a magnetic force when current flows, further including a moving pin or control pin extendable out of the housing by the magnetic force or a spring force and designed to dip into a displacement groove of a sliding can. A sealing element sealing off the interior of the housing from the outside is arranged between a component fixed to the housing and a component fixed to the moving pin. A sliding cam system including at least one camshaft, on which at least one sliding cam having a displacement groove is arranged such that the sliding cam can be displaced but is fixed against rotation, and into which sliding cam a moving pin of a sliding cam engages is provided.
Abstract:
A directional valve (30) for controlling a hydraulic oil flow from a pressure port (34) via working chambers of a camshaft adjuster (4) to a tank port (58). The directional valve (30) includes an accumulator port (36) for conducting at least a part of the hydraulic oil flowing out of a working chamber into a volume accumulator (54) before said hydraulic oil flows out into the tank port (58), and the accumulator port (36) is connected via a passage (60) to the pressure port (34).
Abstract:
A camshaft adjuster (4) including a stator (20) and a rotor (22) which is received in the stator (20) and which can be rotated relative to the stator (20) by a pressure chamber (44), a pressure interface (46, 80) for supplying hydraulic liquid to the pressure chamber (44), and an outflow interface (78) for the discharge of the hydraulic liquid from the pressure chamber (44). The camshaft adjuster (4) also has a third interface (82) for filling the pressure chamber (44) with hydraulic liquid from a volume accumulator (47).
Abstract:
A camshaft adjustor (4), for an internal combustion engine (2), the camshaft adjustor having a stator (20), a rotor (22) which is rotatably accommodated in the stator (20), a pressure chamber (44) for adjusting the rotor (22) in relation to the stator (20) and a volume reservoir (70) for equalizing a negative pressure in the pressure chamber (44) via a channel (88) between the pressure chamber (44) and the volume reservoir (70). A non-return valve (72) having a closure part (102) for blocking a channel (88) which opens a volume reservoir (70) into a pressure chamber (44) in a camshaft adjustor (4), wherein the non-return valve (72) is formed of a metal sheet and the closure part (102) is realized so as to be movable in a recess (98) of the metal sheet (92) with two oppositely situated ends (94, 96) which are bent toward each other.
Abstract:
A camshaft adjuster (4) for a camshaft (12) of an internal combustion engine (2). The camshaft adjuster (4) includes a stator (20), a rotor (22) housed concentrically in the stator (20) and mounted rotatably about a rotational axis (78) relative to the stator (20), and a volume accumulator (70) for receiving a hydraulic fluid from a pressure chamber (44) formed between the rotor (22) and the stator (20). The volume accumulator (70) has an outlet (76) in a direction of the rotational axis (78).
Abstract:
An actuator unit (1) of a cam shifting system, which actuator unit is mountable on an internal combustion engine or a component thereof and has at least one actuator pin (5) for moving shifting cam units of the cam shifting system into different axial positions by means of at least one shift groove formed on the periphery of the shifting cam units and cooperating with the actuator pin (5). The actuator pins (5) are spring-loaded in a direction toward the shifting cam unit, operable by a solenoid unit, and slidably supported in a housing (2) of the actuator unit (1). The housing (2) of the actuator unit (1) is provided with at least one enlargement in each inner surface facing an actuator pin (5).
Abstract:
A stator (20) for a camshaft adjuster (4). The stator (20) has a ring-shaped outer part (50) for the concentric holding of a rotor (22) with vanes (34) that project in the axial direction and are arranged on the periphery around the rotor (22) and a segment (52) that projects inward in the radial direction from the ring-shaped outer part (50) for engaging between two vanes (34) of the rotor (22), in order to form, together with the two vanes (22), pressure chambers (44) of the camshaft adjuster (4). Here, the segment (52) has a cavity (70) for holding a hydraulic fluid from the pressure chambers (44).
Abstract:
A camshaft adjuster with a drive element, a driven element, and a pressure chamber formed between the drive element and the driven element for generating a relative rotation between the driven element and the drive element, and a volume accumulator that is arranged in the camshaft adjuster and supplies hydraulic medium via a channel from the volume accumulator to the pressure chamber if there is an under-pressure in the pressure chamber. The camshaft adjuster has a non-return valve with a closing part for closing an opening of the channel, the non-return valve allows a flow of hydraulic medium through the channel from the volume accumulator to the pressure chamber, and there is an elastically expandable component that projects into the channel and can be guided by the channel and is connected to the closing part and is provided for applying tension for pulling the closing part into the channel.
Abstract:
A pre-assembled module for a variable-stroke valve drive of an internal combustion engine is provided. The module includes a base plate having at least one projecting guide plate, an e-linear actuator positioned on the projecting guide plate, and a longitudinally guided push rod with two adjusting fingers extending along a wall of the guide plate. Each respective adjusting finger has a contact surface for displacement of a transverse coupling slide of a switchable cam follower. A rocker arm, having first and second arms, is suspended on an underside of the base plate; the first arm in contact with an adjusting pin of the linear actuator; and, the second arm in contact with the push rod for displacement thereof in a first direction. A spring means for displacement of the push rod in a second direction is arranged between the push rod and the guide plate.