Abstract:
An image sensor includes first pixels and a first source follower transistor, which are disposed adjacent to each other in a first pixel area in a column direction, and second pixels and a second source follower transistor, which are formed in a second pixel area adjacent to the first pixel area in a row direction by the same number of the first pixels, wherein when the first pixels share the first source follower transistor and the second pixels share the second source follower transistor, while pixels selected from the same row are activated, the first source follower transistor and the second source follower transistor being activated are disposed so that locations thereof have a diagonal symmetry.
Abstract:
Provided is a complementary metal-oxide-semiconductor (CMOS) image sensor. The CMOS image sensor can include a substrate having a first device isolation layer defining and dividing a first active region and a second active region, a photodiode disposed in the substrate and can be configured to vertically overlap the first device isolation layer, a transfer gate electrode can be disposed in the first active region and can be configured to vertically overlap the photodiode, and a floating diffusion region can be in the first active region. The transfer gate electrode can be buried in the substrate.
Abstract:
A method of checking a sealing state of a housing includes starting an operation of a pressure sensor configured to measure an internal pressure of the housing. The method includes checking whether or not the housing is pressed. The method further includes checking the sealing state of the housing through checking a measured value of the pressure sensor under a pressure of the housing. An apparatus for checking a sealing state of a housing includes the housing configured to keep an internal space thereof sealed off from an outside, a pressure sensor configured to measure a pressure of the internal space, and an interface unit configured to provide to the pressure sensor a control signal that controls an operation of the pressure sensor, and provide pressure information detected through the pressure sensor.
Abstract:
A semiconductor device includes field regions formed in a substrate, and n-type impurity regions disposed between the field regions. At least one of the side surfaces of the field regions has a {100}, {310}, or {311} plane.
Abstract:
A unit pixel of an image sensor includes a charge generation unit, a signal generation unit, and a ground control transistor. The charge generation unit generates photo-charges in response to incident light and provides the photo-charges to a floating diffusion area in response to a transmission control signal. The signal generation unit generates an analog signal having a magnitude corresponding to an electrical potential of the floating diffusion area based on a reset control signal and a row selection signal. The ground control transistor is coupled between the floating diffusion area and a ground voltage, and is turned on in response to a ground control signal.
Abstract:
A semiconductor device includes a light-receiving element which outputs electric charges in response to incident light, and a drive transistor which is gated by an output of the light-receiving element to generate a source-drain current in proportion to the incident light, wherein the drive transistor include a first gate electrode, a first channel region which is disposed under the first gate electrode, first source-drain regions which are disposed at respective ends of the first channel region and that have a first conductivity type, and a first channel stop region which is disposed on a side of the first channel region, and that separates the light-receiving element and the first channel region, the first channel stop region having a second conductivity type that is different from the first conductivity type.
Abstract:
An image sensor includes a first substrate, a photodiode array, a first wiring structure, a second wiring structure, a third wiring structure and a light blocking layer pattern. The photodiode array is disposed in the first substrate. The photodiode array includes first photodiodes in a first region, second photodiodes in a second region and third photodiodes in a third region. The first wiring structure is disposed in the first region. The first wiring structure is electrically connected to the first photodiodes. The second wiring structure is disposed in the second region. The second wiring structure includes power supply wiring. The third wiring structure is disposed in the third region. The third wiring structure is electrically connected to the third photodiodes. The light blocking layer pattern is disposed on the first substrate. The light blocking layer pattern covers the third region and the fourth region.
Abstract:
An image sensor includes a row driver, a pixel array, an analog-to-digital converter, and an output compensating circuit. The row driver generates a photo-gate control signal, a storage control signal, a transfer control signal, a reset control signal and a row selecting signal. The pixel array includes a plurality of pixels, and each pixel uses a deep trench isolation (DTI) region as a photo gate. The pixel array receives optical signals, converts the optical signals to electric signals, and outputs the electric signals as image signals in response to the photo-gate control signal, the storage control signal, the transfer control signal, the reset control signal, and the row selecting signal. The analog-to-digital converter performs an analog-to-digital conversion on the image signals to generate first signals, and the output compensating circuit compensates the first signals.
Abstract:
An image sensor includes a row driver, a pixel array, an analog-to-digital converter, and an output compensating circuit. The row driver generates a photo-gate control signal, a storage control signal, a transfer control signal, a reset control signal and a row selecting signal. The pixel array includes a plurality of pixels, and each pixel uses a deep trench isolation (DTI) region as a photo gate. The pixel array receives optical signals, converts the optical signals to electric signals, and outputs the electric signals as image signals in response to the photo-gate control signal, the storage control signal, the transfer control signal, the reset control signal, and the row selecting signal. The analog-to-digital converter performs an analog-to-digital conversion on the image signals to generate first signals, and the output compensating circuit compensates the first signals.
Abstract:
An image sensor includes a photoelectric conversion unit, a signal generation unit, and a feedback unit. The photoelectric conversion unit is formed above a substrate and detects incident light to generate photo-charges based on a drive voltage. The signal generation unit is formed on the substrate and generates an analog signal based on the photo-charges. The feedback unit generates the drive voltage based on an amount of the photo-charges generated from the photoelectric conversion unit. The image sensor may perform a wide dynamic range (WDR) function.