Abstract:
A method of enhancing a quality of a 3 dimensional (3D) image includes classifying an input 3D image into a plurality of sub-areas based on noise characteristics of the plurality of sub-areas of the input 3D image, denoising each of the plurality of sub-areas of the input 3D image by using different denoising methods according to noise characteristics of each of the classified plurality of sub-areas and obtaining a second 3D image after the denoising, and enhancing a contrast ratio of the second 3D image after the denoising.
Abstract:
A method of generating a tomographic includes detecting a coherence signal that is phase-modulated in a first direction with respect to a cross-section of a subject and includes cross-sectional information of the subject as raw data about the subject; generating a reference temporary tomographic image and at least one temporary tomographic image by performing signal processing on the raw data; detecting an artifact are of the reference temporary tomographic image based on a result of comparing the reference temporary tomographic image with the at least one temporary tomographic image and based on artifact statistics regarding whether an artifact exists; and restoring the artifact area.
Abstract:
The modulator array includes a first optical modulator, which changes a shape a wavefront of an incident light into first wavefronts to modulate the incident light which passes through the first optical modulator; and a second optical modulator that changes a shape at least one of the first wavefronts into second wavefronts to modulate the light output from the first optical modulator.
Abstract:
An optical probe for irradiating light onto a subject includes an optical path control unit configured to receive light from outside the optical probe, and change a path of the light within the optical probe; an optical path length control element configured to receive the light having the changed path from the optical path control unit, and change an optical path length of the light as the optical path control unit changes the path of the light; and an optical output unit configured to receive the light having the changed optical path length from the optical path length control element, and output the light.
Abstract:
An X-ray apparatus includes: a collimator for adjusting an X-ray irradiation region; a data obtainer for obtaining position information of a target in an object based on an electrode signal sensed from electrodes attached to the object; and a controller for setting first coordinates indicating a position of the target on a first coordinate system with respect to the object based on the position information, transforming the first coordinates to second coordinates on a second coordinate system with respect to an X-ray image of the object, and adjusting a position of the collimator based on the second coordinates.
Abstract:
The probe includes a probe body that includes an internal empty space and is configured to be inserted into a coelom; an energy source module that is disposed in the probe body, and configured to emit an energy beam; first and second view windows that are provided at an end portion of the probe body, have different fields of view, and are configured to transmit the emitted energy beam; and a path changing unit that is disposed in the probe body, and configured to change a traveling path of the emitted energy beam to travel to one of the first view window and the second view window.
Abstract:
An image processing method includes configuring a noise reduction filter for each of pixels in an image in accordance with a linear noise model of the image, based on different levels of a noise effect caused to a corresponding pixel, among the pixels, by other pixels, among the pixels and adjacent to the corresponding pixel. The method further includes performing noise reduction filtering on each of the pixels, using the noise reduction filter for each of the pixels, to obtain a noise reduced image.
Abstract:
Provided is a frequency shifting optical swept light source system. The system includes a light source that emits light; an amplifier that amplifies the light output from the light source; an optical converter that shifts a frequency of the amplified light and compresses a spectrum of the amplified light; and a controller that controls a current signal applied to the light source such that a repetition rate of the light output from the light source is adjusted, so that an intensity of the amplified light is adjusted, to thereby adjust a position of the compressed spectrum with respect to a predetermined frequency band.
Abstract:
A method of generating a tomography image includes performing a depth scan on one spot on a surface of a subject using modulated light received from a spatial light modulator, obtaining depth scan data for each of a plurality of patterns of the spatial light modulator by repeating the depth scan on the spot for each of the plurality of patterns, forming a matrix R representing a vector space based on a correlation of signal values of the depth scan data for each of the plurality of patterns, performing a matrix decomposition on the matrix R, dividing the vector space into a noise subspace and a signal subspace based on a matrix obtained by the matrix decomposition, constructing a vector space based on either one or both of components of the signal subspace and components of the noise subspace, and generating a tomography image based on the reconstructed vector space.
Abstract:
A method of emitting wavelength-swept light includes controlling either one or both of magnitudes and on/off timings of currents to be applied to a first gain medium of a first optical generator and a second gain medium of a second optical generator to control an intensity and a wavelength region of each of first wavelength-swept light and second wavelength-swept light; generating the first wavelength-swept light having a first center wavelength based on the current applied to the first gain medium of the first optical generator; generating the second wavelength-swept light having a second center wavelength based on the current applied to the second gain medium of the second optical generator; and emitting output wavelength-swept light by coupling the first wavelength-swept light and the second wavelength-swept light.