Abstract:
An apparatus and method for radio link monitoring in a wireless communication system are provided, in which a transmission point communicating with a network where a Base Station (BS) and at least one Remote Radio Head (RRH) coexist within a cell receives Reference Signal Configuration Information (RSCI) from the network to which the transmission point belongs, receives RSs of at least one RS type indicated by the received RSCI from the BS and the at least one RRH that coexist within the cell, and performs radio link monitoring using the received RSs of the at least one RS type.
Abstract:
Methods and apparatuses are provided for transmitting uplink control information by a terminal in a wireless communication system. System information associated with an uplink transmission of a reference signal is received from a base station. Uplink control information to which a length-3 orthogonal sequence or a length-4 orthogonal sequence is applied is transmitted in a slot of a sub-frame. The reference signal is transmitted based on the received system information.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided in order to support a higher data transmission rate following 4G communication systems such as LTE. Disclosed are a method and device for improving device searching in a D2D communication system supporting direct communication between devices. The method comprises the steps of: generating a search signal including search information; selecting a transmission resource to transmit the search signal; transmitting the search signal through the selected transmission resource; and when a request signal requesting additional information on the search from a counterpart device that has received the search signal is received, transmitting a confirmation signal including the requested additional information to the counterpart device. The present disclosure relates to a communication technique and system which combine a 5G communication system, for supporting a higher data transmission rate following 4G systems, with IoT technology.
Abstract:
An apparatus and a method are provided for transmitting data by a UE in a communication system using SC-FDMA. The method includes receiving resource information from a Node B; determining a hopping parameter; determining a mirroring parameter using a random sequence for a cell; determining a resource for data transmission based on the received resource information; and transmitting the data using the resource for data transmission. Hopping and mirroring are performed at a slot.
Abstract:
Methods and apparatuses are provided for transmitting data by a user equipment (UE) in a communication system. Resource information is received from a node B. A hopping parameter is determined based on a sequence defined by a cell specific seed. A mirroring parameter is determined based on the sequence defined by the cell specific seed. A resource for data transmission is determined based on the resource information, the hopping parameter, and the mirroring parameter. The data is transmitted using the resource for data transmission. The hopping parameter and the mirroring parameter are determined at a slot.
Abstract:
A method, provided by the present disclosure, of transmitting a reference signal by means of a base station in a wireless communication system using a plurality of antenna ports comprises the steps of: mapping wireless resources, for transmitting a reference signal, to a plurality of antenna ports for transmitting the reference signal; and using the wireless resources and transmitting the reference signal to a terminal through the mapped antenna ports. The step of mapping to the antenna ports is characterized by being executed on the basis of a combination of a first mapping pattern between the wireless resources and the antenna ports and a second mapping pattern between the wireless resources and the antenna ports.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosed technique and system can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retailing, security and safety related services, and the like) on the basis of 5G communication technology and IoT related technology. A method for controlling uplink transmission power of a terminal in a wireless communication system comprises the steps of: initializing a power control adjustment value when a repetition level for a coverage enhancement mode is changed; updating the power control adjustment value according to a transmission power control (TPC) command received from a base station; calculating uplink transmission power on the basis of the updated power control adjustment value and the repetition level; and transmitting uplink data or control information by the calculated uplink transmission power.
Abstract:
A method for reporting channel state information by a terminal in a multiple access based communication system is provided. The method includes determining a most favored direction with a highest signal quality with respect to a reference signal received from a base station and determining, as a reported object, some channel directions including the most favored direction among channel directions formed together with the base station, identifying a channel quality information group including channel quality information corresponding to the some channel directions among channel quality information groups classified according to a distance measured with respect to the most favored direction, and transmitting the identified channel quality information group to the base station.
Abstract:
Methods and apparatuses are provided for transmitting data by a user equipment (UE) in a communication system. Resource information is received from a node B. A hopping parameter is determined based on a sequence defined by a cell specific seed. A mirroring parameter is determined based on the sequence defined by the cell specific seed. A resource for data transmission is determined based on the resource information, the hopping parameter, and the mirroring parameter. The data is transmitted using the resource for data transmission. The hopping parameter and the mirroring parameter are determined at a slot.
Abstract:
Methods and apparatuses are provided for transmitting data by a user equipment (UE) in a communication system. Resource information is received from a node B. One of inter-subframe hopping, and intra and inter-subframe hopping, are identified. A hopping parameter is determined. A mirroring parameter is determined. A resource is determined for data transmission based on the resource information, the hopping parameter, and the mirroring parameter. The data is transmitted using the resource for data transmission. The hopping parameter and the mirroring parameter are determined at a slot, if the intra and inter-subframe hopping is identified.