Abstract:
A nano-structure semiconductor light emitting device includes a base layer formed of a first conductivity type semiconductor, and a first insulating layer disposed on the base layer and having a plurality of first openings exposing partial regions of the base layer. A plurality of nanocores is disposed in the exposed regions of the base layer and formed of the first conductivity-type semiconductor. An active layer is disposed on surfaces of the plurality of nanocores and positioned above the first insulating layer. A second insulating layer is disposed on the first insulating layer and has a plurality of second openings surrounding the plurality of nanocores and the active layer disposed on the surfaces of the plurality of nanocores. A second conductivity-type semiconductor layer is disposed on the surface of the active layer positioned to be above the second insulating layer.
Abstract:
A semiconductor light-emitting device includes a light-emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer, and a magnetic layer on the light-emitting structure. The magnetic layer may have at least one magnetization direction that is parallel to an upper surface of the active layer. The magnetic layer may generate a magnetic field that is parallel to the upper surface of the active layer. The magnetic layer may include multiple structures that may have different magnetization directions. Multiple magnetic layers may be included on the light-emitting structure. A magnetic layer may be on a contact electrode. A magnetic layer may be isolated from a pad electrode.
Abstract:
A method of manufacturing a nanostructure semiconductor light emitting device may includes preparing a mask layer by sequentially forming a first insulating layer and a second insulating layer on a base layer configured of a first conductivity-type semiconductor, forming a plurality of openings penetrating the mask layer, growing a plurality of nanorods in the plurality of openings, removing the second insulating layer, preparing a plurality of nanocores by re-growing the plurality of nanorods, and forming nanoscale light emitting structures by sequentially growing an active layer and a second conductivity-type semiconductor layer on surfaces of the plurality of nanocores. The plurality of openings may respectively include a mold region located in the second insulating layer, and the mold region includes at least one curved portion of which an inclination of a side surface varies according to proximity to the first insulating layer.
Abstract:
A light emitting device package may include: a light emitting structure including a plurality of light emitting regions configured to emit light, respectively; a plurality of light adjusting layers formed above the light emitting regions to change characteristics of the light emitted from the light emitting regions, respectively; a plurality of electrodes configured to control the light emitting regions to emit the light, respectively; and an isolation insulating layer disposed between the light emitting regions to insulate the light emitting regions from one another, the isolation insulating layer forming a continuous structure with respect to the light emitting regions.
Abstract:
In some examples, a semiconductor device may comprise a semiconductor chip including a plurality of pixels, each pixel formed of a plurality of sub-pixels, such as a red sub-pixel, green sub-pixel and blue sub-pixel. Each sub-pixel may comprise a light emitting diode. A first signal line may connect to signal terminals of a first group sub-pixels (e.g., arranged in the same row), and a second signal line may connect to common terminals of a second group of sub-pixels (e.g., arranged in the same column). The number of chip pads may thus be reduced to provide increased design flexibility in location and/or allowing an increase in chip pad size. In some examples, a light transmissive material may be formed in openings of a semiconductor growth substrate on which light emitting cells of the sub-pixels were grown. The light transmissive material of some of the sub-pixels may comprise a wavelength conversion material and/or filter. Exemplary display panels and methods of manufacturing semiconductor devices and display panels are also disclosed.
Abstract:
A nanostructure semiconductor light-emitting device includes a base layer formed of a first conductivity-type semiconductor, a first material layer disposed on the base layer and including a plurality of openings, a plurality of light-emitting nanostructures, each of which extends through each of the plurality of openings and includes a nanocore formed of a first conductivity-type semiconductor, an active layer and a second conductivity-type semiconductor shell layer, sequentially disposed on the nanocore, a filling layer disposed on the first material layer, wherein the filling layer fills spaces between the plurality of light-emitting nanostructures and a portion of each of the plurality of light-emitting nanostructures is exposed by the filling layer, a second conductivity-type semiconductor extension layer disposed on the filling layer and covering the exposed portion of each of the plurality of light-emitting nanostructures, and a contact electrode layer disposed on the second conductivity-type semiconductor extension layer.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer and a plurality of light emitting nanostructures. The base layer is formed of a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. Each of the light emitting nanostructures is disposed on the exposed regions of the base layer and includes nanocore formed of a first conductivity type semiconductor, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on side surfaces of the nanocore. Upper surfaces of the light emitting nanostructures are non-planar and contain portions free of the second conductivity-type semiconductor layer in order to prevent light emissions during device driving.
Abstract:
A semiconductor light emitting device including a first conductive semiconductor base layer on a substrate; an insulating layer on the first conductive semiconductor base layer, the insulating layer including a plurality of openings through which the first conductive semiconductor base layer is exposed; and a plurality of nanoscale light emitting structures on the first conductive semiconductor base layer, the nanoscale light emitting structures respectively including a first conductive semiconductor core on an exposed region of the first conductive semiconductor base layer, and an active layer, and a second conductive semiconductor layer sequentially disposed on a surface of the first conductive semiconductor core, wherein a lower edge of a side portion of each nanoscale light emitting structure is on an inner side wall of the opening in the insulating layer.
Abstract:
A method of manufacturing a light emitting diode (LED) package may include forming a light emitting structure having a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer on a growth substrate, forming first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively, bonding a first surface of a light transmissive substrate opposite to a second surface thereof to the light emitting structure, identifying positions of the first and second electrodes that are seen through the second surface of the light transmissive substrate, forming one or more through holes in the light transmissive substrate to correspond to the first and second electrodes, and forming first and second via electrodes by filling the through holes with a conductive material.
Abstract:
An LED light source module includes a light emitting stacked body, and a first through electrode structure and a second through electrode structure passing through a portion of the light emitting stacked body. The light emitting stacked body includes a base insulating layer, light emitting layers sequentially stacked on the base insulating layer, each of the light emitting layers including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and an interlayer insulating layer disposed between the light emitting layers. The first through electrode structure is connected to the first conductivity-type semiconductor layer of each of the light emitting layers, and the second through electrode structure is connected to any one or any combination of the second conductivity-type semiconductor layer of each of the light emitting layers.