Abstract:
According to one embodiment of the present invention, suggested art a method for reporting a power headroom report (hereinafter, PHR) of a terminal and an apparatus of the terminal, the method comprising the steps of: determining whether the terminal is operated in dynamic time division multiple access (hereinafter, TDD, time division duplexer) mode; determining whether the terminal receives service from a plurality of serving cells, when it is determined that the terminal is operated in dynamic TDD mode; determining a power headroom type (hereinafter, PH type) on the basis of a radio resource control (hereinafter, RRC) message and downlink control information (DCI) received from a base station, when it is determined that the terminal receives a service from the plurality of serving cells; and transmitting information about the determined PH type using an extended PHR format. In addition, suggested are a method for receiving a PHR by a base station and a base station apparatus capable of setting a TDD mode in the terminal and receiving the PHR from the terminal.
Abstract:
The embodiments herein provide a method and system for creating a secure connection for a User Equipment (UE) in a wireless network including a UE, carrier aggregated with at least one first serving frequency served by a first eNB and at least one second serving frequency served by a second eNB. A unique non-repetitive security base key associated with the second eNB is generated using a freshness parameter and security key associated with the first eNB. The use of a different freshness parameter for each security base key derivation avoids key stream repetition. Further, a user plane encryption key is derived based on the generated unique non-repetitive security base key associated with the second eNB for encrypting data transfer over at least one data radio bearer.
Abstract:
The present invention relates to a method and apparatus in which a terminal performs contention-based access in a mobile communication system, wherein the method comprises: a sensing step of sensing whether or not contention-based access is allowed for at least one logical channel; a receiving step of receiving a contention-based reverse grant from a base station; and a transmitting step of transmitting data to the base station through the logical channel for which the contention-based access is allowed. According to the present invention, contention-based access can be efficiently performed, and the reliability of transmission can be ensured.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The disclosed communication technique and system therefor can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services, and the like) on the basis of 5G communication technology and IoT-related technology. More specifically, a communication method of a terminal in a mobile communication system comprises the steps of: receiving, from a base station, system information including application specific congestion control for data communication (ACDC) configuration information for indicating whether to apply ACDC to a terminal belonging to a home public land mobile network (HPLMN); determining whether to permit access to the base station on the basis of parameters relating to the ACDC, when the application of the ACDC to the terminal belonging to the HPLMN is set according to the ACDC configuration information; and communicating with the base station according to the determination result.
Abstract:
A bearer reconfiguration method performed by a User Equipment (UE) in a wireless communication system supporting a multi-bearer is provided. The bearer reconfiguration method includes, if the UE performs a bearer reconfiguration from a single bearer to the multi-bearer, reordering Packet Data Convergence Protocol (PDCP) Protocol Data Units (PDUs) received through the multi-bearer, using a timer after a completion of the bearer reconfiguration, and processing the reordered PDCP PDUs into at least one PDCP Service Data Unit (SDU). The method may also include, if the UE performs bearer reconfiguration from the multi-bearer to the single bearer, reordering PDCP PDUs received through the multi-bearer, using a timer until a predetermined condition is satisfied, and processing the reordered PDCP PDUs into at least one PDCP SDU.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method for switching resource pools by a device arranged to transmit according to a first resource pool is provided. The method includes sensing a second resource pool, determining whether the second resource pool has been sensed sufficiently long to apply sensing based resource selection, and selecting resources from an exceptional pool by using random resource selection, if the second resource pool has not been sensed sufficiently long to apply sensing based resource selection.
Abstract:
The present disclosure provides a method for cell reselection in a wireless communication system in which various radio access technologies (RATs) coexist with each other. In a wireless communication system in which heterogeneous networks coexist with each other, the method of cell reselection between heterogeneous networks for a user equipment may include: receiving a system information block (SIB) containing cell reselection parameters from a corresponding base station; checking whether cell reselection parameters based on a cell selection quality value (Squal) are configured in the received SIB; and performing, when cell reselection parameter based on Squal are not configured, cell reselection based on a cell selection receive level value (Srxlev). The present disclosure may prevent the user equipment from performing unnecessary cell reselection.
Abstract:
A method and apparatus for configuring a radio link of a terminal communicating via aggregated carriers including a primary cell and a secondary cell are provided. The method includes detecting a Radio Link Failure (RLF) for the secondary cell, deactivating the secondary cell, and reporting at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to a base station. The apparatus includes a transceiver for communicating with a base station, and a controller configured to detect a RLF for the secondary cell, to deactivate the secondary cell, and to report at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to the base station.
Abstract:
A method and base station in a wireless communication system are provided. The method includes transmitting, to a terminal, system information including information associated with a sub-frame configuration of multimedia broadcast multicast service single frequency network (MBSFN) sub-frames, identifying whether the transmission mode of the terminal is a first transmission mode or a second transmission mode, transmitting, to the terminal, dedicated message including configuration information of the identified transmission mode of the terminal, transmitting, to the terminal, control information in a physical downlink control channel (PDCCH) and data in a physical downlink shared channel (PDSCH) in a first sub-frame of the MBSFN sub-frames, if the terminal is configured in the first transmission mode, and transmitting, to the terminal, the control information in the PDCCH and the data in the PDSCH in a second sub-frame of a non-MBSFN sub-frames, if the terminal is configured in the second transmission mode.
Abstract:
A method and apparatus are provided for transmitting power headroom information by a terminal in a mobile communication system. The method includes receiving, by the terminal, information on an allocated uplink transmission resource; determining whether a path loss has changed more than a threshold, after transmitting last power headroom information, when the terminal has the allocated transmission resource; if the path loss has changed more than the threshold when the terminal has the allocated transmission resource, determining a transmission of the power headroom information; and transmitting an uplink packet including the power headroom information using the allocated uplink transmission resource.