Abstract:
A wireless communication system includes: a switching capacitor; a multi-way switch, having at least a first voltage input port, a second voltage input port, and an intermediate voltage input port, coupled to the switching capacitor; and a CORDIC processor, coupled to the multi-way switch, configured to select the first voltage input port, the second voltage input port, or the intermediate voltage input port.
Abstract:
A method for providing IQ mismatch (IQMM) compensation includes: sending a single tone signal at an original frequency; determining a first response of an impaired signal at the original frequency and a second response of the impaired signal at a corresponding image frequency; determining an estimate of a frequency response of the compensation filter at the original frequency based on the first response and the second response; repeating the steps of sending the single tone signal, determining the first response and the second response, and determining the estimate of the frequency response of the compensation filter by sweeping the single tone signal at a plurality of steps to determine a snapshot of the frequency response of the compensation filter; converting the frequency response of the compensation filter to a plurality of time-domain filter taps of the compensation filter by performing a pseudo-inverse of a time-to-frequency conversion matrix; and determining a time delay that provides a minimal LSE for the corresponding time domain filter taps.
Abstract:
Methods and apparatuses are provided in which a processor of a transceiver selects one of a real component of a complex signal and an imaginary component of the complex signal. The complex signal has IQ imbalance. An adaptive filter of the transceiver performs a real multiplication operation using an adaptive filter coefficient and the one of the real component and the imaginary component of the complex signal to generate a complex compensation signal. An adder of the transceiver sums the complex signal and the complex compensation signal to generate a compensated signal in which the IQ imbalance is corrected. The compensated signal is output for digital processing.
Abstract:
A communication system includes: an inter-device interface configured to receive received signal including communication content; a communication circuit, coupled to the inter-device interface, configured to: determine an in-phase signal-component and a quadrature signal-component based on the received signal, calculate an adjustment value including a first adjustment and a second adjustment based on the in-phase signal-component and the quadrature signal-component according to a maximum-likelihood mechanism, and adjust the received signal based on the adjustment value for reducing an in-phase/quadrature imbalance between the in-phase signal-component and the quadrature signal-component in processing the communication content.
Abstract:
A computing system includes: a communication unit configured to: determine a relaxed coding profile including a polar-processing range for processing content data over a bit channel; process the content data based on a total polarization level being within the polar-processing range, the polar-processing range for controlling a polar processing mechanism or a portion therein corresponding to the bit channel for the content data; and an inter-device interface, coupled to the communication unit, configured to communicate the content data.
Abstract:
A wireless communication system includes: a switching capacitor; a multi-way switch, having at least a first voltage input port, a second voltage input port, and an intermediate voltage input port, coupled to the switching capacitor; and a CORDIC processor, coupled to the multi-way switch, configured to select the first voltage input port, the second voltage input port, or the intermediate voltage input port.
Abstract:
A method for providing IQ mismatch (IQMM) compensation includes: estimating an overall frequency response of a compensation filter by stepping through a frequency range starting at an initial frequency and performing (1) through (3) at each step, a selected frequency at each step being a multiple of a subcarrier frequency of the initial frequency: (1) sending a single tone signal at the selected frequency, (2) determining a first response of a mismatched signal at the selected frequency and a second response of the mismatched signal at an image frequency of the selected frequency, and (3) estimating a frequency response of the compensation filter at the selected frequency based on the first response and the second response; generating time-domain filter taps based on the estimated overall frequency response of the compensation filter; determining a time delay based on the time-domain filter taps; and generating a compensated signal based on the time delay.
Abstract:
A method and an apparatus are provided for calibrating digital pre-distortion (DPD) of an electronic device. A respective signal is received, by each of a first plurality of receiving antennas, from each of a second plurality of transmitting antennas. A DPD function is determined for each of the second plurality of transmitting antennas based on the received signals. A combined DPD function of the second plurality of transmitting antennas is determined based on the DPD functions and phase shifter settings associated with the second plurality of transmitting antennas.
Abstract:
A method for providing IQ mismatch (IQMM) compensation includes: sending a single tone signal at an original frequency; determining a first response of an impaired signal at the original frequency and a second response of the impaired signal at a corresponding image frequency; determining an estimate of a frequency response of the compensation filter at the original frequency based on the first response and the second response; repeating the steps of sending the single tone signal, determining the first response and the second response, and determining the estimate of the frequency response of the compensation filter by sweeping the single tone signal at a plurality of steps to determine a snapshot of the frequency response of the compensation filter; converting the frequency response of the compensation filter to a plurality of time-domain filter taps of the compensation filter by performing a pseudo-inverse of a time-to-frequency conversion matrix; and determining a time delay that provides a minimal LSE for the corresponding time domain filter taps.
Abstract:
An apparatus and a method. The apparatus includes a plurality of polarization processors, including n inputs and n outputs, where n is an integer, wherein the plurality of polarization processors is configured to polarize channels with different bit-channel reliability; and at least one permutation processor, including n inputs and n outputs, wherein each of the at least one permutation processor is connected between two of the plurality of polarization processors, and connects the n outputs of a first of the two of the plurality of polarizations processors to the n inputs of a second of the two of the plurality of polarization processors between which each of the at least one permutation processor is connected in a permutation pattern, wherein at least one permutation processor is configured to not further polarize a bit channel.