Abstract:
A base station (BS) capable of communication with a number of transmission points includes a processor configured to control a beamforming transmission or reception and an integrated antenna array system. The integrated antenna array system includes a baseband signal processing unit configured to perform baseband functions and disposed between the two sections. The integrated antenna array system also includes a plurality of physical antenna elements disposed in groups. Each of the groups includes an equal number of the plurality of physical antenna elements. The plurality of physical antenna elements are disposed symmetrically around the baseband signal processing unit.
Abstract:
An apparatus can include a substrate, a first antenna panel, a second antenna panel and a wall isolator. The first antenna panel can be coupled on the substrate and comprising an array of first antenna elements. The second antenna panel can be coupled on the substrate comprising an array of second antenna elements. The wall isolator can be coupled on the substrate. The wall isolator can include a first EBG element and a second EBG element. The first EBG element can be positioned along an edge of the first antenna panel for a length of the substrate and configured to reduce surface wave propagation from the array of first antenna elements. The second EBG element can be positioned along an edge of the second antenna panel for a length of the substrate and configured to reduce surface wave propagation from the array of second antenna elements.
Abstract:
A method includes determining one or more delay values and one or more phase shift values for generation of multiple desired frequency-dependent analog beams. The method also includes configuring one or more true-time delay (TTD) elements and one or more phase shifters of a transceiver based on the one or more delay values and the one or more phase shift values, the transceiver having one or more radio-frequency (RF) chains connected to multiple antennas via the one or more TTD elements and the one or more phase shifters. The method also includes operating the transceiver to generate the multiple desired frequency-dependent analog beams.
Abstract:
A system and method for an efficient port switching technique for line-of-sight multiple-input multiple-output communications by a base station is provided. The base station includes an antenna array comprising a first number of antenna ports. The base station also includes a transceiver configured to communicate in a wireless communication medium. The base station further includes a processor. The processor is configured to determine, based on the wireless communication medium, one or more parameters of the base station or a receive base station. The processor also is configured to select, based on the one or more first parameters and one or more second parameters, a second number of antenna ports to perform a communication with the receive base station.
Abstract:
A SmarterFi gateway integrates a WiFi access point and smart repeater, and executes a method therefor. The method includes receiving, from a user equipment (UE) via a first wireless communication channel, wireless fidelity (WiFi) signals that include information indicating a location of the UE. The WiFi signals are received by a transceiver that includes a first antenna array for communication with the UE, and a second antenna array for communication with a gNB. The method includes transmitting, to the gNB via the second antenna array, uplink data and control information that includes the UE location information. The method includes receiving, from the gNB via the second antenna array, downlink information intended for the UE. The method includes forward-transmitting, to the UE via a second wireless communication channel, the downlink information via a beam formed at the first antenna array to serve the UE at the location of the UE.
Abstract:
An apparatus includes a substrate, first and second transmission lines on the substrate, first antenna elements coupled to a first-first transmission line, and second antenna elements coupled to a first-second transmission line. A first distance between the adjacent first-first and first-second transmission lines is different than a second distance between the first-first transmission line and a second-second transmission line, the second-second transmission line adjacent to the first-first transmission line on an opposite side from the first-second transmission line. At least two antenna elements in the first antenna elements are differently sized.
Abstract:
A method for real-time THz sensing using true time delay (TTD) is implemented by a base station and includes transmitting, by a transceiver that includes TDD elements and phase shifters configured in the transceiver, simultaneous frequency dependent (SFD) beams to scan an environment at a first granularity to detect a spatial cluster target. Each of the SFD beams corresponds to a different phase angle and different frequency. The method includes determining, among the SFD beams, a subset of beams that detected the spatial cluster target. The method includes beam switching, by the transceiver, using time division multiplexing (TDM) and a TDM bandwidth to scan a portion of the environment at phase angles corresponding to the subset of beams and at a second granularity finer than the first granularity. The method includes combining data received from the SFD beams, by multiple threads that concurrently process data received from the SFD beams.
Abstract:
A method includes receiving, by a base station, a sounding reference signal (SRS) symbol from a user equipment (UE). The method also includes estimating, by the base station, an uplink (UL) channel from the UE to a full dimensional multiple-input multiple-output (FD-MIMO) base station base band based on the received SRS symbol. The method also includes receiving, by the base station from the UE, an estimate of a downlink (DL) channel from the FD-MIMO base station base band to the UE. The method also includes performing, by the base station, a joint calibration by applying one or more calibration algorithms using channel state information (CSI) of the UL channel and the DL channel.
Abstract:
An end-to-end digital beamforming system includes a transmitter configured to transmit data and a receive configured to receive the data. Each of the transmitter and receiver includes a transceiver configured to communicate via a wired or wireless communication medium. Each of the transmitter and receiver also includes a processor and a base-tile antenna array comprising a plurality of antenna tiles. Each of the antenna tiles includes a radio frequency integrated circuit (RFIC) and an antenna-array-in-package comprising a plurality of antenna elements. The antenna tiles are disposed a different rotations such that a first antenna tile is disposed to transmit a first signal at a first polarization and a second antenna tile is disposed to transmit a second signal at a second polarization. Additionally, each of the antenna tiles transmits a part of a bandwidth.
Abstract:
An apparatus includes a first, second, and third substrates. The first substrate includes a first antenna element supporting a first frequency band and a second frequency band higher than the first frequency band. The first substrate includes a first dielectric material having a first dielectric constant. The second substrate includes a second antenna element supporting the first frequency band and the second frequency band. The second substrate includes the first dielectric material. The third substrate is disposed between the first substrate and the second substrate and includes a third antenna element supporting the second frequency band. The third substrate includes a second dielectric material having a second dielectric constant lower than a first dielectric constant. The first and second antenna elements form a first beam in the first frequency band. The first, second, and third antenna elements form a second beam in the second frequency band.