Abstract:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
Abstract:
A wireless power receiving device and a wireless power transmission apparatus are provided. The wireless power receiver may include a resonator configured to emit an electromagnetic field, a blocker configured to surround a portion of an exterior of the resonator, and a spacer disposed between the resonator and the blocker.
Abstract:
A wireless charging station, an electric vehicle charged wirelessly, and a method of charging an electric vehicle are provided. A wireless charging station include a charging unit configured to transmit power wirelessly to an electric vehicle, using a source resonator installed in the charging station; and a driving unit configured to move a target resonator connected to the source resonator from a position at which the target resonator is mounted on the charging unit to an installation space of the electric vehicle, when the electric vehicle is disposed in a charging area of the charging station.
Abstract:
A wireless power transmission apparatus includes a resonance unit including resonators and configured to form a magnetic resonant coupling with another resonator, and a feeding unit configured to transmit alternating current (AC) power to one of the resonators. The wireless power transmission apparatus further includes a controller configured to determine a value of a capacitor connected to one of the resonators, based on a magnitude of a magnetic field formed by the resonance unit.
Abstract:
An electronic device includes a battery, a power regulator electrically connected with the battery and including an input terminal and an output terminal, a connector electrically connected with the input terminal, a wireless power transmitting circuit electrically connected with the output terminal, a switch electrically connected between the connector and the wireless power transmitting circuit, and a controller configured to identify an approaching external electronic device or a wireless charging-related request, identify whether power is provided from an external power supply via the connector in response to the identification, in response to identifying that power is not provided from the external power supply, supply power from the battery via the power regulator to the wireless power transmitting circuit, and in response to identifying that power is provided from the external power supply, supply the power provided from the external power supply to the wireless power transmitting circuit via the switch.
Abstract:
An apparatus and a method for charge control are provided. The apparatus for charge control may include an integrated direct current-to-direct current (DC/DC) converter configured to step up an output voltage level of a load to be greater than or equal to a supply voltage level set in a power amplifier, and the power amplifier configured to convert a direct current (DC) voltage stepped up by the integrated DC/DC converter into an alternating current (AC) voltage based on a resonant frequency, and to amplify the converted AC voltage. The apparatus for charge control may include a rectification unit configured to convert an AC power received wirelessly into a DC power; and a DC/DC converter configured to step down a voltage level of the DC power to a voltage level required by a load in the receiving mode.
Abstract:
A wireless power relay apparatus includes a relay resonator configured to relay power from a source resonator configured to wirelessly transmit the power, to a target resonator configured to wirelessly receive the power through a mutual resonance, the relay resonator having a higher quality factor than the source resonator and the target resonator.
Abstract:
A wireless power transmission apparatus for tracking a charging capacity of each of a plurality of wireless power reception apparatuses in an environment in which the plurality of wireless power reception apparatuses are charged includes a communication unit configured to receive information about either one or both of a charging support power and a requested power from each of the plurality of wireless power reception apparatuses, a controller configured to determine a charging capacity for a wireless power reception apparatus supporting the charging support power among the plurality of wireless power reception apparatuses based on the information about the charging support power, and a power tracker configured to re-track the determined charging capacity based on charging status information received from the plurality of wireless power reception apparatuses.
Abstract:
A source device and a method for controlling a magnetic field using two source resonators in a wireless power transmission system are provided. A device configured to control a magnetic field, includes resonators configured to form the magnetic field to transmit power to another device. The device further includes a magnetic field shape determining unit configured to determine a shape of the magnetic field. The device further includes a phase changing unit configured to change a phase of at least one of the resonators to form the magnetic field in the determined shape.
Abstract:
An apparatus and method for communication using a wireless power are provided. The apparatus includes an amplifier configured to amplify an input signal based on a power supplied to the amplifier. The apparatus further includes a control unit configured to detect a change in an impedance of a target device, and to change the power based on the change in the impedance. The apparatus further includes a demodulation unit configured to receive a message from the target device, and to demodulate the message based on the changed power.