Abstract:
A display apparatus includes a number of pixels. Each pixel includes a substrate including a pixel area and a non-pixel area disposed between adjacent pixel areas, a first electrode disposed on the substrate in the pixel area, and a second electrode extending in a first direction and being spaced apart upward from the substrate by a predetermined distance in the pixel area defining a tunnel-shaped cavity, an image display layer disposed in the tunnel-shaped cavity and driven by an electric field formed between the first electrode and the second electrode, a roof layer disposed on the second electrode, and a sealing layer extending in the first direction, having a black color, and being disposed in the non-pixel area between adjacent pixel areas in a second direction crossing the first direction to seal the tunnel-shaped cavity.
Abstract:
A method of jetting a liquid crystal includes loading a substrate on a stage, controlling a surface temperature of an inkjet head and a substrate to be a setting temperature, and jetting the liquid crystal molecules on the substrate having the setting temperature.
Abstract:
A wire grid polarizer substrate including a wire grid base layer having a first surface and a second surface opposing each other, and an engraved trench extending along a first direction and having a concave shape penetrating into the second surface from the first surface of the wire grid base layer.
Abstract:
An organic light emitting diode (OLED) display device including: a substrate; first, second and third thin film transistors sequentially laminated over the substrate; a pixel definition layer formed over the substrate and defining a pixel area; and first, second and third organic light emitting diode elements formed over the substrate, sequentially laminated in the pixel area, and respectively connected to the first, second and third thin film transistors.
Abstract:
A display panel includes a substrate including a plurality of thin-film transistors thereon, a plurality of gate lines respectively connected to a thin film transistor and disposed on the substrate, a color filter layer disposed on the substrate and the gate lines, a black matrix disposed on the color filter and overlapped with the gate lines, and a hole defined in the black matrix and exposing the color filter layer, a first electrode disposed on the color filter and electrically connected to the thin-film transistor and an image displaying layer disposed on the first electrode.
Abstract:
A liquid crystal display includes a substrate, a thin film transistor disposed on the substrate, a pixel electrode disposed on the thin film transistor, a roof layer facing the pixel electrode, and at least one partition wall disposed along an edge of the substrate, in which a plurality of microcavities is formed between the pixel electrode and the roof layer, and the plurality of microcavities includes a liquid crystal material.
Abstract:
An inkjet apparatus for depositing liquid crystal according to an exemplary embodiment of the present invention includes: an inkjet head configured to discharge liquid crystal; a liquid crystal reservoir configured to provide the liquid crystal to the inkjet head, and the liquid crystal reservoir comprises metal; a storing tank configured to supply the liquid crystal to the liquid crystal reservoir; and a heat supply device configured to supply heat to the liquid crystal reservoir, in which a separation part is disposed inside of the liquid crystal reservoir, and the separation part divides the liquid crystal reservoir into an upper storing space and a lower storing space.
Abstract:
An inkjet print head includes a jet assembly which includes a nozzle plate, the nozzle plate including an ink transferring path on a bottom surface of the nozzle plate, and a jet jetting a transferred ink out of the head. A printed circuit substrate is connected to the jet assembly and includes an integrated circuit and a connection electrode. A barrier coating layer covers a surface of the printed circuit substrate and an inner surface and an outer surface of the jet assembly except a bottom surface of the nozzle plate and a surface of the connection electrode of the jet assembly and the printed circuit substrate being connected with each other. The barrier coating layer has a layered structure which includes a flexible layer, a diffusion barrier layer, and a hydrophobic layer.
Abstract:
An inkjet print head includes a jet assembly which includes a nozzle plate, the nozzle plate including an ink transferring path on a bottom surface of the nozzle plate, and a jet jetting a transferred ink out of the head. A printed circuit substrate is connected to the jet assembly and includes an integrated circuit and a connection electrode. A barrier coating layer covers a surface of the printed circuit substrate and an inner surface and an outer surface of the jet assembly except a bottom surface of the nozzle plate and a surface of the connection electrode of the jet assembly and the printed circuit substrate being connected with each other. The barrier coating layer has a layered structure which includes a flexible layer, a diffusion barrier layer, and a hydrophobic layer.
Abstract:
A display device includes a base layer including first and second portions, and a third portion between the first and second portions and configured to be bent, folded, or rolled, a light emitting element layer on one surface of the base layer at the first portion, and including light emitting elements, a circuit board on the one surface of the base layer at the third portion, and electrically connected to the light emitting elements, protective patterns spaced apart from each other on another surface of the base layer, including a resin, and also including first protective patterns spaced apart from each other on the other surface of the base layer at the first portion, and at least one second protective pattern on the other surface of the base layer at the second portion, and at least one of a heat dissipation layer or a cushion layer below the protective patterns.