Abstract:
A flexible display and a method of manufacturing the same are disclosed. In one aspect, the display includes a flexible substrate including a display area and a peripheral area that surrounds the display area, and a thin-film transistor (TFT) layer formed on the flexible substrate and comprising an insulating layer and a TFT. The insulating layer is formed of an organic material and has an opening that surrounds the display area in the peripheral area; a pixel electrode electrically connected to the TFT. The display also includes a first metal layer formed in the opening and covering inner sides of the opening.
Abstract:
A display device includes a substrate comprising a first plastic layer, a second plastic layer on the first plastic layer, and an inorganic layer between the first plastic layer and the second plastic layer, an inorganic embossed layer on the substrate and comprising a plurality of mountain parts, an organic layer on the inorganic embossed layer, an inorganic buffer layer on the organic layer, a thin film transistor on the inorganic buffer layer, and a display element electrically connected to the thin film transistor.
Abstract:
A flexible display and a method of manufacturing the same are disclosed. In one aspect, the display includes a flexible substrate including a display area and a peripheral area that surrounds the display area, and a thin-film transistor (TFT) layer formed on the flexible substrate and comprising an insulating layer and a TFT. The insulating layer is formed of an organic material and has an opening that surrounds the display area in the peripheral area; a pixel electrode electrically connected to the TFT. The display also includes a first metal layer formed in the opening and covering inner sides of the opening.
Abstract:
A display device includes a reinforced substrate; and a display layer disposed on the reinforced substrate and configured to display an image, wherein the reinforced substrate includes a first reinforced layer including a flexible region including a plurality of patterns spaced apart from one another; and a first substrate disposed on the first reinforced layer and has flexibility. A modulus of elasticity of the first reinforced layer is greater than a modulus of elasticity of the first substrate.
Abstract:
An organic light-emitting display apparatus includes a substrate, an inorganic insulation film on the substrate, an organic insulation film on the inorganic insulation film, an organic light-emitting device on the organic insulation film, and an encapsulation unit including a first inorganic film covering the organic light-emitting device and having a first boundary portion contacting the organic insulation film, an organic film covering the first inorganic film and having a second boundary portion contacting the inorganic insulation film, and a second inorganic film covering the organic film and having a third boundary portion contacting the substrate.
Abstract:
A display device includes a reinforced substrate; and a display layer disposed on the reinforced substrate and configured to display an image, wherein the reinforced substrate includes a first reinforced layer including a flexible region including a plurality of patterns spaced apart from one another; and a first substrate disposed on the first reinforced layer and has flexibility. A modulus of elasticity of the first reinforced layer is greater than a modulus of elasticity of the first substrate.
Abstract:
A display apparatus includes a substrate, a display unit over the substrate, the display unit including a thin film transistor, a display element connected to the thin film transistor, and a planarization layer between the thin film transistor and the display element. The display unit includes a display area to display an image, and a non-display area outside of the display area. The non-display area includes a plurality of voltage lines. The planarization layer extends into the non-display area and includes a divisional portion that divides the planarization layer into a central portion and a peripheral portion. The divisional portion surrounds the display area. An interlayer insulating film is between voltage lines at intersections of the voltage lines with each other in the divisional portion. A protecting film covers a side of the interlayer insulating film in the divisional portion.
Abstract:
A thin film transistor substrate and an organic light-emitting diode display including the same are disclosed. In one aspect, the TFT substrate includes substrate and a TFT located on the substrate. The TFT includes a lower gate electrode, a first insulating layer covering the lower gate electrode, an oxide semiconductor layer located on the first insulating layer, a first electrode located on the oxide semiconductor layer and having an island shape, a second electrode located on the oxide semiconductor layer and surrounding the first electrode, a second insulating layer at least partially covering the oxide semiconductor layer; and an upper gate electrode located on the second insulating layer. The oxide semiconductor layer includes a first region, a second region surrounding the first region, and a third region interposed between the first and second regions.
Abstract:
An organic light-emitting display apparatus includes a substrate, an inorganic insulation film on the substrate, an organic insulation film on the inorganic insulation film, an organic light-emitting device on the organic insulation film, and an encapsulation unit including a first inorganic film covering the organic light-emitting device and having a first boundary portion contacting the organic insulation film, an organic film covering the first inorganic film and having a second boundary portion contacting the inorganic insulation film, and a second inorganic film covering the organic film and having a third boundary portion contacting the substrate.
Abstract:
A thin film transistor substrate and an organic light-emitting diode display including the same are disclosed. In one aspect, the TFT substrate includes substrate and a TFT located on the substrate. The TFT includes a lower gate electrode, a first insulating layer covering the lower gate electrode, an oxide semiconductor layer located on the first insulating layer, a first electrode located on the oxide semiconductor layer and having an island shape, a second electrode located on the oxide semiconductor layer and surrounding the first electrode, a second insulating layer at least partially covering the oxide semiconductor layer; and an upper gate electrode located on the second insulating layer. The oxide semiconductor layer includes a first region, a second region surrounding the first region, and a third region interposed between the first and second regions.