Abstract:
A display driver includes a video data conversion unit, a data compression unit, a memory unit, and a data restoration unit. The video data conversion unit converts first video data that includes RGB data to second video data that includes pentile data. The data compression unit compresses at least a portion of the second video data. The memory unit stores at least the compressed second video data. The data restoration unit restores the compressed second video data.
Abstract:
A data processing apparatus includes a diagonal detector, a first processor, and a second processor. The diagonal detector may determine whether a red-blue data set includes data for controlling a display device to display any diagonal line, the display device including subpixels arranged in first-type lines and second-type lines that are alternately disposed, the red-blue data set including 9 data values that correspond to 9 subpixels among the subpixels, the 9 subpixels forming a 3-by-3 array that includes a center subpixel, the 9 data values including a center data value that corresponds to the center subpixel. The first/second processor may process the center data value using a first/second coefficient to produce a first/second value that corresponds to the center subpixel if the center subpixel is in the first-type/second-type lines.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A display device includes a display panel including a plurality of sub-pixels arranged in a first pixel arrangement structure, and a display driver which receives input image data corresponding to a second pixel arrangement structure different from the first pixel arrangement structure. In a normal driving mode, the display driver generates first output image data for all of the plurality of sub-pixels by performing a first rending operation on the input image data, and drives all of the plurality of sub-pixels based on the first output image data. In a low power driving mode, the display driver generates second output image data for a portion of the plurality of sub-pixels by performing a second rending operation different from the first rending operation on the input image data, and drives the portion of the plurality of sub-pixels based on the second output image data.
Abstract:
A method of determining pixel luminance includes determining a smoothing reference line between a display region and a non-display region in a display panel, determining a boundary pixel, through which the smoothing reference line passes, among pixels included in the display region, dividing the boundary pixel into a first pixel region in the display region and a second pixel region in the non-display region based on the smoothing reference line, calculating a smoothing rate corresponding to a ratio of an area of the first pixel region to a total area of the boundary pixel, and determining dimming luminance of the boundary pixel based on the smoothing rate.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
A method of determining a pixel luminance including determining a smoothing reference line between a display region and a non-display region in a display panel, determining a boundary pixel through which the smoothing reference line passes among pixels included in the display region, dividing the boundary pixel into a first pixel region directed toward the display region and a second pixel region directed toward the non-display region based on the smoothing reference line, calculating a smoothing rate corresponding to a ratio of an area of the first pixel region to a total area of the boundary pixel, and determining a dimming luminance of the boundary pixel based on the smoothing rate.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.
Abstract:
An organic light emitting display device and a driving method thereof are disclosed. The display device has sub-pixels of multiple colors. In one aspect, the organic light emitting display device detects sub-pixels which are positioned at the edges of the panel. Data for the sub-pixels on the edges are reduced so that colors on the edges are less observable.