Abstract:
An organic light emitting display apparatus includes a substrate; a thin film transistor which is disposed over the substrate; a first electrode which is disposed over the substrate and electrically connected to the thin film transistor; a passivation layer which covers the thin film transistor and contacts a predetermined region of an upper surface of the first electrode; an intermediate layer which is disposed over the first electrode, includes an organic emission layer, and contacts a predetermined region of the passivation layer; and a second electrode which is disposed over the intermediate layer.
Abstract:
A method of manufacturing an organic light-emitting display includes a first mask process forming an active layer of a TFT and a refractive layer on a substrate, forming a DBR layer covering the active and refractive layers, a second mask process forming a gate electrode and a first electrode unit on the DBR layer, forming an interlayer insulation layer covering the gate electrode and the first electrode unit, a third mask process forming contact holes in the interlayer insulation layer and the DBR layer exposing portions of the active layer and a hole exposing the first electrode unit, a fourth mask process forming source and drain electrodes on the interlayer insulation layer that contact the active layer via the contact holes, and forming a pixel electrode from the first electrode unit, and a fifth mask process forming a pixel definition layer exposing the pixel electrode.
Abstract:
An organic light-emitting display device includes a substrate. A buffer layer is formed on the substrate. A thin film transistor is disposed on the buffer layer. The thin film transistor includes an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer, and a second insulating layer. An uneven pattern is formed by patterning the buffer layer. A first pixel electrode is disposed in an opening formed in the second insulating layer. The first pixel electrode includes a transparent conductive oxide. A second pixel electrode is disposed on the first pixel electrode. The second pixel electrode includes a semi-transmissive layer. An organic lighting-emitting layer is formed on the second pixel electrode. An opposite electrode is formed on the organic lighting-emitting layer.
Abstract:
Provided are an organic light-emitting display apparatus having superior light efficiency and ease of manufacture, as well as a method of manufacturing the same. The organic light-emitting display apparatus includes: a substrate; a pixel electrode disposed on a pixel region of the substrate; a first insulating layer that is interposed between the substrate and the pixel electrode and that has a first discontinuous region extending along at least a portion of an edge of the pixel electrode; an intermediate layer that is disposed on the pixel electrode and that includes an emission layer; and an opposite electrode that covers the intermediate layer and at least a portion of the first discontinuous region, so that a shortest distance to the substrate in at least a portion of the first discontinuous region is shorter than a shortest distance between the pixel electrode and the substrate.
Abstract:
An organic light emitting display device includes: a substrate; a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode; an organic light emitting device including a pixel electrode that contacts at least one of the source electrode or the drain electrode of the TFT, an interlayer including a light emitting layer, and a counter electrode facing the pixel electrode, the pixel electrode, the interlayer, and the counter electrode being stacked; and a cathode contact part including a first contact layer and a second contact layer, the first contact layer being at a same layer as the active layer and being doped with ion impurities, the second contact layer including a same material as the source electrode and the drain electrode and coupling the first contact layer and the counter electrode to each other.
Abstract:
An organic light emitting diode (OLED) display including: a substrate; a scan line formed on the substrate and configured to transmit a scan signal; a data line and a driving voltage line crossing the scan line and respectively configured to transmit a data signal and a driving voltage; a switch connected to the scan line and the data line; a static electricity shield enclosing the switch; and an organic light emitting diode (OLED) connected to the switch.