Abstract:
A capacitor includes an active layer, a gate insulation layer on the active layer, a gate electrode on the gate insulation layer, an interlayer insulating layer on the gate electrode, and a first electrode on the interlayer insulating layer and connected to the active layer through at least one contact hole.
Abstract:
A capacitor includes an active layer, a gate insulation layer on the active layer, a gate electrode on the gate insulation layer, an interlayer insulating layer on the gate electrode, and a first electrode on the interlayer insulating layer and connected to the active layer through at least one contact hole.
Abstract:
A capacitor includes an active layer, a gate insulation layer on the active layer, a gate electrode on the gate insulation layer, an interlayer insulating layer on the gate electrode, and a first electrode on the interlayer insulating layer and connected to the active layer through at least one contact hole.
Abstract:
An organic light-emitting display apparatus includes a substrate including a plurality of red, green, and blue sub-pixel regions, a pixel electrode in each of the plurality of the red, green, and blue sub-pixel regions on the substrate, a Distributed Bragg Reflector (DBR) layer between the substrate and the pixel electrodes, a high-refractive index layer between the substrate and the DBR layer in the blue sub-pixel region, the high-refractive index layer having a smaller area than an area of a corresponding pixel electrode in the blue sub-pixel region, an intermediate layer including an emissive layer on the pixel electrode, and an opposite electrode on the intermediate layer.
Abstract:
An organic light emitting diode display includes a substrate, a semiconductor layer disposed on the substrate and including an intrinsic poly-semiconductor part and a doped poly-semiconductor part, a gate insulating layer covering the semiconductor layer, a scan line disposed on the gate insulating layer and transmitting a scan signal, a data line insulated from and intersecting the scan line and transmitting a data signal, a thin film transistor connected to the scan line and the data line, and an organic light emitting diode connected to the thin film transistor, where the intrinsic poly-semiconductor part is positioned at a region near the scan line.
Abstract:
A capacitor includes an active layer, a gate insulation layer on the active layer, a gate electrode on the gate insulation layer, an interlayer insulating layer on the gate electrode, and a first electrode on the interlayer insulating layer and connected to the active layer through at least one contact hole.
Abstract:
A method of manufacturing an organic light-emitting display includes a first mask process forming an active layer of a TFT and a refractive layer on a substrate, forming a DBR layer covering the active and refractive layers, a second mask process forming a gate electrode and a first electrode unit on the DBR layer, forming an interlayer insulation layer covering the gate electrode and the first electrode unit, a third mask process forming contact holes in the interlayer insulation layer and the DBR layer exposing portions of the active layer and a hole exposing the first electrode unit, a fourth mask process forming source and drain electrodes on the interlayer insulation layer that contact the active layer via the contact holes, and forming a pixel electrode from the first electrode unit, and a fifth mask process forming a pixel definition layer exposing the pixel electrode.
Abstract:
A display device includes an organic light emitting element and a capacitor connected to the a thin film transistor. The transistor includes a semiconductor layer uniformly disposed on an entire area of a substrate. The transistor also includes a first insulating layer on the semiconductor layer, a gate electrode pattern on the first insulating layer, a gate guard on a same layer as and surrounding the gate electrode pattern, a second insulating layer on the gate electrode pattern and the gate guard, and source and drain electrodes passing through the first insulating layer and the second insulating layer and connected to the semiconductor layer. The gate electrode pattern includes a plurality of gate center portions and a gate peripheral portion having a closed-loop shape extending from the gate center portions.
Abstract:
An organic light emitting diode (OLED) display including: a substrate; a scan line formed on the substrate and configured to transmit a scan signal; a data line and a driving voltage line crossing the scan line and respectively configured to transmit a data signal and a driving voltage; a switch connected to the scan line and the data line; a static electricity shield enclosing the switch; and an organic light emitting diode (OLED) connected to the switch.
Abstract:
A thin film transistor is disclosed. The thin film transistor may include a semiconductor formed on a substrate, a gate insulating layer formed on the semiconductor, a gate electrode formed on the gate insulating layer and including a plurality of branches overlapping the semiconductor, an interlayer insulating layer at least partially overlapping the gate electrode, and a repair pattern formed on the interlayer insulating layer. The repair pattern may be formed overlapping the branches. The repair pattern may also be formed in a closed loop.