Abstract:
A substantially rectangular display panel includes a first edge extending in a first major axis direction of the rectangular shape and a second edge extending in a second major axis direction of the rectangular shape, the second direction being different from the first direction. The display panel includes: a plurality of gate lines extending in the first direction; and a gate lines driver including a plurality of main stages sequentially connected to each other and configured for outputting gate signals to the gate lines, where the plurality of stages further includes one or more dummy stages arranged in a row along the second edge and not connected to the plurality of gate lines, and where a layout arrangement of a plurality of thin film transistors included in the main stage is different from a corresponding layout arrangement of corresponding thin film transistors included in the at least one dummy stage.
Abstract:
Provided is an organic light-emitting display device comprising a substrate, an insulating layer disposed on the substrate, a first electrode disposed on the insulating layer, an organic layer disposed on the first electrode, a second electrode disposed on the organic layer, an auxiliary electrode disposed on the insulating layer and a metal layer disposed adjacent to the auxiliary electrode and connected to the auxiliary electrode and the second electrode.
Abstract:
A liquid crystal display device may include a gate line, a data line, a storage electrode set, a transistor, a pixel electrode, and repair member. The gate line may transmit a gate signal. The data line may transmit a data signal. The transistor may include a gate electrode connected to the gate line, a source electrode connected to the data line, and a drain electrode connected to the pixel electrode. The drain electrode and the storage electrode set may overlap each other and form a storage capacitor. The repair member may be formed of an electrically conductive material, may be electrically insulated from each of the drain electrode and the data line, and may overlap the storage electrode set.
Abstract:
A thin film transistor array panel includes a first subpixel electrode and a second subpixel electrode electrically connected with a drain electrode through a first contact hole and a second contact hole, respectively. The first subpixel electrode and the second subpixel electrode include a plurality of vertical stems, a plurality of horizontal stems, and a plurality of branch electrodes. The first subpixel electrode is formed above a gate line and the second subpixel electrode is formed below a gate line. The thin film transistor array panel further includes a first protrusion formed in the plurality of vertical stems of the first subpixel electrode and the plurality of vertical stems of the second subpixel electrode.
Abstract:
Provided is an organic light-emitting display device comprising a substrate, an insulating layer disposed on the substrate, a first electrode disposed on the insulating layer, an organic layer disposed on the first electrode, a second electrode disposed on the organic layer, an auxiliary electrode disposed on the insulating layer and a metal layer disposed adjacent to the auxiliary electrode and connected to the auxiliary electrode and the second electrode.
Abstract:
A scan signal driver includes: a plurality of stages configured to be driven by dividing a first frame period into a display period and a sensing period, and to sequentially output scan signals at the display period, wherein each of the plurality of stages comprises: an output control circuit; and a memory control circuit, wherein the scan driver is configured to: irregularly set a specific stage of the plurality of stages at a display period every frame; control the specific stage to: store a voltage by using the memory control circuit; and output a sensing signal by using the stored voltage at a sensing period, and the memory control circuit includes: a second memory transistor configured to electrically connect an M node with an I node; and a third memory transistor configured to electrically connect the output control circuit with the I node.
Abstract:
An embodiment of the present inventive concept provides a liquid crystal display, including: a first gate line; a first data line crossing the first gate line; a first transistor including a gate electrode connected to the first gate line, a source electrode connected to the first data line, and a drain electrode; a first connecting line connected to the drain electrode; a first contact portion connected to the first connecting line; and a first pixel electrode connected to the first contact portion, wherein the first pixel electrode may be disposed between the first transistor and the first contact portion.
Abstract:
A display device includes: a substrate; a gate line disposed on the substrate and configured to transmit a gate signal; a reference voltage line disposed apart from the gate line and configured to transmit a reference voltage; an insulation layer disposed on the gate line and the reference voltage line; a pixel electrode layer including: a first sub-pixel electrode disposed on the insulation layer and located at a first side with reference to the gate line; and a second sub-pixel electrode disposed on the insulation layer and located at a second side opposite to the first side with reference to the gate line; and a conductive shield portion disposed on the gate line, wherein the gate line includes two parallel edges, an edge closer to the reference voltage line among the two parallel edges including a first edge, and wherein the conductive shield portion overlaps the first edge.
Abstract:
A thin film transistor array panel includes a first subpixel electrode and a second subpixel electrode electrically connected with a drain electrode through a first contact hole and a second contact hole, respectively. The first subpixel electrode and the second subpixel electrode include a plurality of vertical stems, a plurality of horizontal stems, and a plurality of branch electrodes. The first subpixel electrode is formed above a gate line and the second subpixel electrode is formed below a gate line. The thin film transistor array panel further includes a first protrusion formed in the plurality of vertical stems of the first subpixel electrode and the plurality of vertical stems of the second subpixel electrode.
Abstract:
A thin film transistor according to the present inventive concept includes: a first and a second pixel electrodes that are electrically connected to the drain electrode through the contact hole and disposed to be adjacent to each other in a column direction, wherein the first pixel electrode includes a first sub-pixel electrode and a second sub-pixel electrode that include a vertical stem part, a horizontal stem part, and a plurality of minute branches, the second pixel electrode includes a third sub-pixel electrode and a fourth sub-pixel electrode that include a vertical stem part, a horizontal stem part, and a plurality of minute branches, and the plurality of minute branches of the second sub-pixel electrode and the plurality of minute branches of the third sub-pixel electrode that are adjacent to each other to each other in the column direction form an angle of 45° or more to 135° or less.