Abstract:
A display device including: a substrate; an active layer, and including channel and conductive regions and; a first conductive layer including a driving gate electrode and a scan line in a first direction; a second conductive layer including a storage line; a third conductive layer including a first connecting member above the storage line; an insulating layer between the storage line and the first connecting member; and a data line and a driving voltage line crossing the scan line in a second direction, wherein the first connecting member electrically connects the driving gate electrode and a conductive region, the driving voltage line overlaps the first connecting member, the insulating layer includes first and second sub-insulating layers, and an edge of the second sub-insulating layer substantially overlaps an edge of the first connecting member in a thickness direction of the display device.
Abstract:
A display device includes a substrate including a display area and a non-display area. First, second, and third insulating layers are sequentially disposed on the substrate. Pixels are disposed in the display area. Each of the pixels including a transistor and a light emitting element connected to the transistor. A data line is disposed in the display area. The data line is configured to supply a data signal to each of the plurality of pixels. A wiring portion is disposed in the non-display area. The wiring portion includes a connecting line connected to the data line and a fan-out line connected to the connecting line. A dummy pattern is disposed in the non-display area. The dummy pattern at least partially overlaps the wiring portion.
Abstract:
A display device includes a driving transistor; a transistor connected to the driving transistor; a first insulating layer; a first data conductive layer including a first connection pattern; a second insulating layer including a lower via hole; a second data conductive layer including a second connection pattern connected to the first connection pattern and a first conductive line; a third insulating layer including an intermediate via hole; a third data conductive layer including a third connection pattern connected to the second connection pattern, a second conductive line extending in a second direction, and a first data line which extends in the second direction; a fourth insulating layer including an upper via hole; and a light emitting element disposed including a first electrode, wherein at least two of the lower via hole, the intermediate via hole, and the upper via hole overlap each other in a third direction.
Abstract:
A display device comprises a substrate including display and peripheral areas, a semiconductor element, a pixel structure, and a plurality of dummy patterns. The semiconductor element is disposed in the display area on the substrate, and the pixel structure is disposed on the semiconductor element. The dummy patterns which have stacked structure are disposed in the peripheral area on the substrate, and contain a material identical to a material constituting the semiconductor element. The dummy patterns are arranged in a grid shape in different layers, and each of the dummy patterns includes a central portion and an edge portion surrounding the central portion. The edge portions of dummy patterns which are adjacent to each other in the different layers among the dummy patterns are overlapped each other in a direction from the substrate to the pixel structure.
Abstract:
A display device includes a substrate and an active pattern positioned above the substrate and including a plurality of channel regions and a plurality of conductive regions. The display device includes a plurality of scan lines extending substantially in a first direction. The display device includes a data line and a driving voltage line crossing the plurality of scan lines. The display device includes a first transistor including a first channel region among the plurality of channel regions and a first gate electrode. The display device includes a first connector electrically connecting the first gate electrode of the first transistor and a first conductive region among the plurality of conductive regions to each other. The driving voltage line overlaps at least a portion of the first connector along a direction orthogonal to an upper surface of the substrate.
Abstract:
A display device includes a substrate, a semiconductor layer on the substrate, a first insulating layer on the semiconductor layer, a first conductive layer on the semiconductor layer, a second insulating layer on the first conductive layer, a first contact hole penetrating the first insulating layer and the second insulating layer, a second conductive layer on the second insulating layer, connected to the semiconductor layer through the first contact hole, and including a hydrogen barrier material, and a third insulating layer on the second conductive layer.
Abstract:
A display panel includes: an active area and a peripheral area adjacent to the active area, wherein the active area includes a display area including a plurality of emitting pixels and a non-display area including a plurality of non-emitting pixels, an emitting pixel of the plurality of emitting pixels includes a light-emitting element, and a non-emitting pixel of the non-emitting pixels does not include any light-emitting element or includes a pseudo-light-emitting element that is not capable of emitting light.
Abstract:
A display device includes a substrate, a switching transistor and a driving transistor positioned on the substrate, a first electrode connected to the driving transistor, a second electrode positioned on the first electrode, and a pixel definition layer positioned between the first electrode and the second electrode, where the pixel definition layer includes a first portion, and a second portion having a thickness less than that of the first portion, where a pixel opening defined in the pixel definition layer is enclosed by the first portion, and the second portion overlaps the first electrode and the second electrode.
Abstract:
A thin film transistor array panel may include a channel layer including an oxide semiconductor and formed in a semiconductor layer, a source electrode formed in the semiconductor layer and connected to the channel layer at a first side, a drain electrode formed in the semiconductor layer and connected to the channel layer at an opposing second side, a pixel electrode formed in the semiconductor layer in a same portion of the semiconductor layer as the drain electrode, an insulating layer disposed on the channel layer, a gate line including a gate electrode disposed on the insulating layer, a passivation layer disposed on the source and drain electrodes, the pixel electrode, and the gate line, and a data line disposed on the passivation layer. A width of the channel layer may be substantially equal to a width of the pixel electrode in a direction parallel to the gate line.
Abstract:
A display device includes a supporting substrate including a polymeric material, base substrate disposed on an upper surface of the supporting substrate, a pixel array disposed in a display area of the base substrate, a transfer wiring disposed in a bending area of the base substrate and electrically connected to the pixel array, and an organic filling portion disposed under the transfer wiring in the bending area. The base substrate includes an organic film including a polymeric material, and an inorganic barrier film overlapping the organic film and extending outwardly from an edge of the organic film. The organic filling portion contacts the organic film of the base substrate.