Abstract:
A display device includes: a substrate including an alignment area in a non-display area, and a display area including a plurality of material layers on the substrate; in the alignment area, a plurality of keys including a first alignment key and a second alignment key. Each alignment key includes a light blocking pattern, a layer pattern and a display pattern. The position of the display pattern within the first alignment key is different from the position of the display pattern within the second alignment key, the layer pattern of the alignment key and one material layer among the plurality of material layers are respective portions of a same material layer on the substrate, and the layer pattern of the first alignment key and the layer pattern of the second alignment key are respective portions of different material layers among the plurality of material layers on the substrate.
Abstract:
A color filter panel includes: a base substrate having a first pixel area, a second pixel area, and a light blocking area between the first pixel area and the second pixel area; a first color filter on the base substrate in the first pixel area; a second color filter on the base substrate in the second pixel area; a first photoluminescence pattern on the first color filter in the first pixel area and configured to convert a color of light; and a second photoluminescence pattern on the second color filter in the second pixel area and configured to convert a color of light. The second photoluminescence pattern partially overlaps the first photoluminescence pattern in the light blocking area.
Abstract:
A display panel includes a first substrate in which first, second and third pixel areas and a light blocking area are defined, and a second substrate. The first substrate includes a base layer, a first wavelength conversion layer disposed under the base layer, a second wavelength conversion layer disposed under the base layer, an optical layer disposed under the base layer, a first partition layer disposed between the first and second wavelength conversion layers and including a first layer including a same material as that of the optical layer and a second layer spaced apart from the base layer with the first layer interposed therebetween, and a second partition layer disposed between the second wavelength conversion layer and the optical layer.
Abstract:
A display apparatus includes a display panel including a plurality of pixels, and a cover panel including a window layer, an optical filter layer, a color filter layer and a bezel layer. The window layer includes a transmission region and a bezel region adjacent to the transmission region. The optical filter layer is disposed on the transmission region of the rear surface of the window layer. The color filter layer is disposed on the optical filter layer and includes a quantum dot. The bezel layer is disposed on the bezel region of the rear surface. The optical filter layer includes a partition wall layer, in which an opening is defined, a light-blocking layer disposed on the partition wall layer, and a reflection layer disposed in the opening. The bezel layer has a same color as the light-blocking layer.
Abstract:
An exemplary embodiment of present disclosure provides a color conversion panel including: a substrate; a plurality of light blocking layers disposed on the substrate; a color conversion layer disposed on the substrate between the plurality of the light blocking layers and including quantum dots; an optical filter layer covering the color conversion layer and the light blocking layers; and a hydrogen blocking layer disposed on one surface of the optical filter layer.
Abstract:
A display device includes a transistor, a data line, a pixel electrode, a common electrode, and a liquid crystal layer. The data line is connected to a source electrode of the transistor. A geometric radius of curvature associated with the display device is perpendicular to the data line. The pixel electrode is connected to a drain electrode of the transistor and includes a plate electrode. Sides of the plate electrode are oriented at acute angles with respect to the data line in a plan view associated with the display device. The common electrode overlaps the pixel electrode and has a slit. The slit has a first edge and a second edge. The first edge is perpendicular to the data line in the plan view and is longer than the second edge. The liquid crystal layer is positioned between the pixel electrode and the common electrode.
Abstract:
A curved display device includes a first substrate, a second substrate facing the first substrate, a liquid crystal layer disposed between the first and second substrates, the liquid crystal layer including liquid crystal molecules, a first alignment layer including reactive mesogens which are polymerized with each other, the first alignment layer being disposed between the first substrate and the liquid crystal layer, and a second alignment layer disposed between the liquid crystal layer and the second substrate, where the reactive mesogens have a functional group having charges.
Abstract:
A display apparatus includes a display panel including a plurality of pixels, and a cover panel including a window layer, an optical filter layer, a color filter layer and a bezel layer. The window layer includes a transmission region and a bezel region adjacent to the transmission region. The optical filter layer is disposed on the transmission region of the rear surface of the window layer. The color filter layer is disposed on the optical filter layer and includes a quantum dot. The bezel layer is disposed on the bezel region of the rear surface. The optical filter layer includes a partition wall layer, in which an opening is defined, a light-blocking layer disposed on the partition wall layer, and a reflection layer disposed in the opening. The bezel layer has a same color as the light-blocking layer.
Abstract:
A color filter panel includes: a base substrate having a first pixel area, a second pixel area, and a light blocking area between the first pixel area and the second pixel area; a first color filter on the base substrate in the first pixel area; a second color filter on the base substrate in the second pixel area; a first photoluminescence pattern on the first color filter in the first pixel area and configured to convert a color of light; and a second photoluminescence pattern on the second color filter in the second pixel area and configured to convert a color of light. The second photoluminescence pattern partially overlaps the first photoluminescence pattern in the light blocking area.
Abstract:
Provided is a display device. The display device includes a display panel including a division pattern including a lower division wiring disposed on a bottom substrate, an upper division wiring disposed on a top substrate, and a short connector and displaying images and a signal controller including a panel recognition unit generating panel data according to a division output signal outputted from the division pattern. As a result, the display device recognizes a location in the mother substrate assembly of the display panel, selects a gamma value according to the display cell symbol, and gamma-corrects image information, thereby improving gamma characteristics of the display device.