Abstract:
The present inventive concept relates to a display device and a manufacturing method thereof. A display device according to an exemplary embodiment of the present inventive concept includes: a substrate; a first gate conductor provided on the substrate; and a gate insulator provided on the first gate conductors, wherein edges of the first gate conductor are recessed from edges of the first gate insulator, and the edges of the first gate insulator are respectively parallel with the edges of the first gate conductor.
Abstract:
A display substrate for a display device includes: a substrate which includes a light blocking region defining a plurality of pixel areas disposed in a matrix, each pixel area having a length extending in a second direction, and a width extending in a first direction; a color filter overlapping a portion of the each pixel area of the plurality of pixel areas; and an alignment layer disposed on the color filter. the color filter includes a first edge parallel to the second direction, and a second edge forming a predetermined angle with the first edge. The second edge is substantially parallel to an alignment direction of the alignment layer.
Abstract:
A method of manufacturing a display device including: preparing a substrate having a display area and a non-display area; and forming an alignment mark disposed in the non-display area of the substrate. The alignment mark includes a quadrangular-shaped center portion and a plurality of measurement portions that surround the center portion, the plurality of measurement portions including four or more measurement portions, and each of the measurement portions including sides that are parallel with two sides of the quadrangular-shaped center portion.
Abstract:
The present inventive concept relates to a display device and a manufacturing method thereof. A display device according to an exemplary embodiment of the present inventive concept includes: a substrate; a first gate conductor provided on the substrate; and a gate insulator provided on the first gate conductors, wherein edges of the first gate conductor are recessed from edges of the first gate insulator, and the edges of the first gate insulator are respectively parallel with the edges of the first gate conductor.
Abstract:
A liquid crystal display including: a display area which includes an upper substrate, a lower substrate, pixels and a liquid crystal layer interposed between the upper and lower substrates; and a measuring unit including a tag portion, a common voltage applying portion, and a pixel voltage applying portion, in which the common voltage applying portion and the tag portion, and the pixel voltage applying portion and the tag portion are connected to each other, a data conductor, a common electrode, a passivation layer, and a pixel electrode are disposed on the common voltage applying portion with substantially the same thickness as at least one of the pixels of the display area, a first part of the data conductor of the common voltage applying portion directly contacts the pixel electrode, and a second part of the data conductor of the common voltage applying portion directly contacts the common electrode.
Abstract:
A carrier substrate includes: a base substrate; a first coating layer on a first surface of the base substrate; and a second coating layer on a second surface of the base substrate. The thermal expansion coefficients of the first coating layer and the second coating layer are greater than a thermal expansion coefficient of the base substrate, and a thickness of the first coating layer is different from a thickness of the second coating layer.
Abstract:
A display apparatus includes a pixel part disposed in a display area of a base substrate, including a switching element connected to a signal line, a pixel electrode connected to the switching element and a common electrode that overlaps the pixel electrode, a plurality of fan-out lines disposed in a peripheral area of the base substrate that are connected to the signal line of the display area, a plurality of pads disposed in the peripheral area of the base substrate that are respectively connected to end portions of the fan-out lines, an organic layer that covers the switching element of the display area and that extends from the display area to a portion of the fan-out lines, and an electrode pattern that overlaps the fan-out lines in a boundary portion of the organic layer.
Abstract:
A transistor display panel including: a substrate; a gate electrode disposed on the substrate; a semiconductor that overlaps the gate electrode; an upper electrode disposed on the semiconductor; a source connection member and a drain connection member disposed on the same layer as the upper electrode and respectively connected with the semiconductor; a source electrode connected with the source connection member and the upper electrode; and a drain electrode connected with the drain connection member.
Abstract:
An organic light emitting diode display according to an exemplary embodiment of the present disclosure includes: a substrate; a first electrode disposed on the substrate; an auxiliary electrode formed at the same layer as the first electrode; a pixel defining layer having a first contact hole overlapping a part of the auxiliary electrode; an organic light emitting member disposed on the pixel defining layer and having a second contact hole enclosing the first contact hole; and a second electrode disposed on the organic light emitting member and inside the first contact hole and the second contact hole, wherein the second electrode is in contact with the auxiliary electrode through the first contact hole and the second contact hole.
Abstract:
A thin film transistor array panel includes an insulation substrate; a gate line and a data line on the insulation substrate; a first passivation layer on the gate line and the data line; an organic layer on the first passivation layer; a first electrode on the organic layer; a second passivation layer on the first electrode; and a second electrode on the second passivation layer. An edge of the organic layer is exposed by the first electrode.