Abstract:
A method for detecting a defect of a barrier film includes preparing a device including an electrode and a barrier film covering the electrode, allowing a charged medium to contact a surface of the barrier film, and measuring a change in a flow of current between the charged medium and the electrode.
Abstract:
A laser processing apparatus using a laser. The laser processing apparatus includes a light source for generating a hollow laser beam in a first direction; a reflection member for changing a path of the hollow laser beam toward the first direction into a second direction toward the substrate; a lens for collecting the hollow laser beam reflected by the reflection member; and an air supply unit for supplying air toward particles generated while the substrate is processed by the hollow laser beam, wherein the lens has a first hole passing through the lens, the reflection member has a second hole passing through the reflection member, and the first and second holes form a discharge path of the particles.
Abstract:
A laser beam irradiation apparatus includes a laser light source, a controller for controlling energy of light generated by the laser source, a first optical system for adjusting a shape of light that has passed through the controller, a scanner for adjusting the direction of light that has passed through the first optical system, and an F-theta lens for reducing a beam that has passed through the scanner.
Abstract:
A method for inspecting a polysilicon layer includes: radiating excitation light to the polysilicon layer; and detecting a photoluminescence signal generated by the excitation light, wherein average power of the excitation light has a range of 1 W/cm2 to 10 W/cm2, and peak power of the excitation light has a range of 100 W/cm2 to 1000 W/cm2.
Abstract translation:一种用于检查多晶硅层的方法包括:向多晶硅层辐射激发光; 并且检测由激发光产生的光致发光信号,其中激发光的平均功率具有1W / cm 2至10W / cm 2的范围,并且激发光的峰值功率具有100W / cm 2至1000W的范围 / cm2。
Abstract:
A method of measuring conductivity of a silicon thin film is provided. By the method, a capacitive sensor is positioned over a silicon thin film sample with an air-gap between the sensor and the sample, a size of the air-gap is measured using the capacitive sensor while an excitation light source module is turned off, an excitation light is illuminated on the silicon thin film sample by turning on the excitation light source module, where the excitation light is an ultraviolet light, a conductivity change of the silicon thin film sample is measured using the capacitive sensor, and a measurement error due to a deviation of the air-gap is eliminated by normalizing the conductivity change based on a measurement result of the size of the air-gap.
Abstract:
A method of measuring conductivity of a silicon thin film is provided. By the method, a capacitive sensor is positioned over a silicon thin film sample with an air-gap between the sensor and the sample, a size of the air-gap is measured using the capacitive sensor while an excitation light source module is turned off, an excitation light is illuminated on the silicon thin film sample by turning on the excitation light source module, where the excitation light is an ultraviolet light, a conductivity change of the silicon thin film sample is measured using the capacitive sensor, and a measurement error due to a deviation of the air-gap is eliminated by normalizing the conductivity change based on a measurement result of the size of the air-gap.