Abstract:
A display apparatus and a method of manufacturing the same, which may improve light efficiency degradation caused by a surface plasmon generated on a cathode electrode. The display apparatus may include a substrate, a plurality of pixel electrodes on the substrate, an emission layer above each of the plurality of pixel electrodes, an opposite electrode above the emission layer to correspond to the plurality of pixel electrodes, wherein the opposite electrode is a single body, a first passivation layer on the opposite electrode and having a thickness less than the size of a wavelength of visible light generated from the emission layer, and a conductive layer on the first passivation layer and including a through-pattern having a preset shape.
Abstract:
An inorganic metal halide compound for one of a light emitting device and an optical member, the compound being represented by Formula 1 and having a double perovskite structure of Formula 1 as defined herein.
Abstract:
A polarizing film, a method of preparing the polarizing film, and a display device including the polarizing film in which the polarizing film includes a self-aligned polymer matrix; liquid crystals aligned and cured in one direction in accordance with an alignment direction of the polymer matrix; and a dichroic dye aligned in the alignment direction of the liquid crystals.
Abstract:
A backlight unit which includes a light guiding layer having an incident surface on which light is incident and an exit surface from which light is emitted, a light source disposed on the incident surface of the light guiding layer and configured to generate the light, a low refraction layer disposed on the exit surface of the light guiding layer, a color control layer disposed on the low refraction layer, and a protection layer disposed on the color control layer. The protection layer includes a resin composition including a first repeating unit represented by Formula 1:
Abstract:
Provided is an alignment layer including a copolymer including a first compound and a second compound. The first compound is different than the second compound. The first compound and the second compound are each independently selected from a compound represented by Formula 1:
Abstract:
A liquid crystal display includes a liquid crystal panel, a polarizing plate on a surface of the liquid crystal panel and having a polarizing axis; and a compensation film between the liquid crystal panel and the polarizing plate, and having an optical axis at which light passes through the compensation film. When a surface of the compensation film is referred to as a x-y plane, a plane passing through an x-axis and vertical to the optical axis of the compensation film is referred to as an x-y′ plane. A first retardation value (Ro′) of the compensation film is (nx−ny′)d, and a second retardation value (Rth′) is [(nx+ny′)/2−nz′]d, and the first and second retardation values (Ro′) and (Rth′) satisfy the following Formula of 0.92≦Rth′/Ro′≦4.75, where ‘n’ denotes a refractive index and ‘d’ denotes a thickness of the compensation film in a z-axis direction.