Abstract:
A method of driving a display panel includes compensating first pixel data corresponding to a first pixel of a plurality of pixels in the display panel based on at least one of a first decision, a second decision, or a third decision and generating a first data voltage corresponding to the compensated first pixel data. The first data voltage is applied to the first pixel through a data line. The first decision includes determining, based on a position of the first pixel, whether compensation for the first pixel data is required. The second decision includes determining, based on previous subpixel data and present subpixel data for the first pixel, whether the compensation for the first pixel data is required. The third decision includes determining whether the first pixel data complies with a compensation avoidance condition.
Abstract:
A display apparatus includes a first compensation part that corrects image data using an LUT that stores correction data corresponding to the image data, where grayscale differences between low-grayscale correction data and low-grayscale image data are greater than grayscale differences between middle-grayscale correction data and middle-grayscale image data, and a low-grayscale filter that transforms grayscale values of low-grayscale image data into predetermined low-grayscale values when grayscale values of the low-grayscale image data are less than or equal to a threshold low-grayscale value.
Abstract:
A display panel apparatus includes a display panel and a timing controller, and a data driver. The display panel includes a first subpixel and a second subpixel. The timing controller is configured to receive a first subpixel data for the first subpixel and a second subpixel data for the second subpixel. When the second subpixel is determined to be defective, the timing controller generates a compensated grayscale of the second subpixel data. The data driver is configured to apply a precharge voltage to the second subpixel and a charging voltage to second subpixel through a data line, wherein the precharge voltage is based on a grayscale of the first subpixel data and the charging voltage is based on the compensated grayscale of the second subpixel data.
Abstract:
A display apparatus includes: a display panel including a first display area and a second display area; a first timing controller to control an operation of the first display area, generate a first reference clock signal, generate a first internal reference clock signal based on the first reference clock signal, and generate a first synchronization clock signal based on the first internal reference clock signal; and a second timing controller to control an operation of the second display area, receive the first reference clock signal, generate a second internal reference clock signal based on the first reference clock signal, and generate a second synchronization clock signal based on the second internal reference clock signal, wherein the first and second timing controllers are to be synchronized with each other based on the first reference clock signal, and exchange first data based on the first and second synchronization clock signals.
Abstract:
The present invention provides a display device with reduced power consumption and that reduces changes in luminance, and perceptibility of flicker, and a driving method thereof. A display device according to an exemplary embodiment comprises: a display panel configured to display a still image and a motion picture; a signal controller configured to control signals for driving the display panel; and a graphics processing unit configured to transmit input image data to the signal controller, wherein the signal controller comprises a frame memory configured to store the input image data, and the display panel is driven at a first frequency when the motion picture is displayed and the display panel is driven at a second frequency that is lower than the first frequency when the still image is displayed.
Abstract:
A display panel apparatus includes a display panel and a timing controller, and a data driver. The display panel includes a first subpixel and a second subpixel. The timing controller is configured to receive a first subpixel data for the first subpixel and a second subpixel data for the second subpixel. When the second subpixel is determined to be defective, the timing controller generates a compensated grayscale of the second subpixel data. The data driver is configured to apply a precharge voltage to the second subpixel and a charging voltage to second subpixel through a data line, wherein the precharge voltage is based on a grayscale of the first subpixel data and the charging voltage is based on the compensated grayscale of the second subpixel data.
Abstract:
A display apparatus includes a display panel, a first timing controller, a second timing controller and a third timing controller. The first timing controller controls an operation of a first region in the display panel, and generates a reference clock signal. The second timing controller controls an operation of a second region in the display panel, and receives the reference clock signal. The third timing controller controls an operation of a third region in the display panel, and receives the reference clock signal. The first, second and third timing controllers are synchronized with one another in response to the reference clock signal and a state synchronization signal, and operate in one of a plurality of states depending on an operation of the display apparatus.
Abstract:
A liquid crystal display device includes a liquid crystal panel which includes gate lines, data lines crossing the gate lines, and pixels connected to the gate lines and the data lines; a timing controller for receiving a control signal and image data and for generating a gate control signal and a data control signal; a gate driver for generating a gate signal based on the gate control signal and outputting the gate signal to the gate lines; and a data driver for performing data conversion on the image data based on the data control signal and outputting a conversion result to the data lines, wherein the timing controller analyzes the image data frame by frame data and applies two or more inversion driving techniques to frame data.
Abstract:
A display apparatus includes: a display panel including a first display area and a second display area; a first timing controller to control an operation of the first display area, generate a first reference clock signal, generate a first internal reference clock signal based on the first reference clock signal, and generate a first synchronization clock signal based on the first internal reference clock signal; and a second timing controller to control an operation of the second display area, receive the first reference clock signal, generate a second internal reference clock signal based on the first reference clock signal, and generate a second synchronization clock signal based on the second internal reference clock signal, wherein the first and second timing controllers are to be synchronized with each other based on the first reference clock signal, and exchange first data based on the first and second synchronization clock signals.
Abstract:
A display device including a display panel, including a plurality of pixels, a driver circuit configured to display an image on the display panel in response to an image signal and a control signal, and a voltage generator configured to generate an analog driving voltage for an operation of the driver circuit in response to a voltage control signal. The driver circuit is configured to compare the image signal to ripple image patterns and is configured to output the voltage control signal to change a voltage level of the analog driving voltage, according to the result of the comparison.