Abstract:
A repair pixel and a display apparatus including the repair pixel, the display panel including a repair pixel for a pixel row or a plurality of repair pixels for a pixel row so that repair may be performed using the repair pixel when a bad pixel occurs in the corresponding pixel row. The bad pixel is repaired using the repair pixel so that the yield of the display panel may be enhanced.
Abstract:
A flexible display device according to example embodiments includes a rollable display panel, a housing accommodating the rollable display panel in a rolled state and including an opening portion through which the rollable display panel is pulled out, an optical sensor disposed at the opening portion and configured to detect luminance of the rollable display panel while the rollable display panel is rolled or unrolled, a controller configured to compensate image data based on detection data generated by the optical sensor, and a display panel driver configured to control a display of rollable display panel.
Abstract:
An organic light emitting display can improve display quality by securing a charging time of a data signal. An organic light emitting display includes pixels, a data driver, a plurality of data drivers, and a control signal generator. The pixels are respectively positioned at areas defined by scan lines and data lines. The data driver sequentially supplies i (i is a natural number greater than or equal to 2) data signals to each of output lines during one horizontal period. The plurality of data dividers are respectively coupled to the output lines, and supply the i data signals to i data lines. The control signal generator sequentially supplies i control signals to the data dividers, corresponding to the i data signals. In the organic light emitting display, the data dividers supply a corresponding data signal to each data line during the one horizontal period.
Abstract:
A pixel includes a driving circuit, a first organic light emitting diode, a second organic light emitting diode, and a self-repair circuit. The driving circuit supplies current based on a data signal supplied through a data line. The first organic light emitting diode is coupled to the driving circuit through a first current path. The second OLED is coupled to the driving circuit through a second current path. The self-repair circuit interrupts the first current path and supplies the current to the second current path when the first organic light emitting diode has a defect.
Abstract:
A scan line driver is disclosed. In one aspect, the scan line driver includes a driving signal generation circuit, an output line driving circuit, and a carry transfer circuit. The driving signal generation circuit is configured to generate first and second driving signals based on a plurality of clock signals and a carry signal from a previous scan line driver. The output line driving circuit is configured to generate a scan line enable signal based on the first and second driving signals. The carry transfer circuit is configured to generate a carry signal based on the first and second driving signals.
Abstract:
A sensing driving circuit and a display device including the same are disclosed. In one aspect, the sensing driving circuit includes a plurality of stages configured to respectively output a plurality of sensing signals and including a (K)th stage and a (K+1)th stage. The (K)th stage includes a shift register configured to provide a (K)th carry signal to the (K+1)th stage; and a masking buffer configured to output a (K)th sensing signal. The masking buffer includes a first input circuit configured to provide i) an input signal to a first node based on a node driving signal and ii) a first power voltage to a second node based on the input signal and the node driving signal. The masking buffer also includes a node masking circuit configured to supply the first power voltage to the first node based on a masking signal.
Abstract:
A pixel circuit and an electroluminescent display including the same are disclosed. In one aspect, the pixel circuit includes a scan transistor connected between a data line and a first node and having a gate electrode configured to receive a scan signal, a driving transistor connected between a first power supply voltage and a third node and having a gate electrode connected to a second node, an emission control transistor connected between the third node and a fourth node and having a gate electrode configured to receive an emission control signal, a light-emitting diode connected between the fourth node and a second power supply voltage less than the first power supply voltage, and a compensation circuit initializes the second node to an initial voltage during a first compensation period and electrically connects the second node to the third node during a second compensation period following the first compensation period.
Abstract:
Each pixel of a display device includes: an organic light emitting diode between a first and a second power supply; a first transistor to transmit a drive current based on data signals; a second transistor to couple a gate electrode of the first transistor to the data line in response to a scan signal; a first capacitor between the first power supply and the gate electrode of the first transistor; a light receiving element coupled to a third power supply; a second capacitor between the light receiving element and a fourth power supply; a third transistor between the data line and a first electrode of the second capacitor, the third transistor including a gate electrode coupled to a selection signal line; and a fourth transistor between the fourth power supply and the third transistor, the fourth transistor including a gate electrode coupled to the first electrode of the second capacitor.
Abstract:
A pixel includes an organic light emitting diode, a first driver and a second driver. The second driver controls an amount of current supplied from a first power source to the organic light emitting diode, corresponding to a previous data signal. The first driver stores a current data signal supplied from a data line and supplies the previous data signal to the second driver. In the pixel, the second driver includes a sixth transistor coupled between an initialization power source and a first node coupled to a gate electrode of a first transistor, the sixth transistor being configured to turn on when a first control signal is supplied; and a seventh transistor coupled between the first power source and a second node commonly coupled to the first and second drivers, the seventh transistor being configured to turn on when the first control signal is supplied.
Abstract:
A display panel includes a pixel connected to a scan line and a data line, and a lighting test circuit which provides a lighting test voltage to the pixel through the data line. The lighting test circuit includes a first test transistor including a first electrode which receives the lighting test voltage, a second electrode and a gate electrode which receives a first test control signal, and a second test transistor including a first electrode connected to the second electrode of the first test transistor, a second electrode connected to the data line and a gate electrode which receives a second test control signal.