Abstract:
A composite material including a first porous metal body having a three-dimensional mesh-like skeleton, a second porous metal body having a three-dimensional mesh-like skeleton, and a bonding portion formed by entanglement of the skeleton of the first porous metal body and the skeleton of the second porous metal body. The porosity of the first porous metal body may be different from the porosity of the second porous metal body.
Abstract:
A method for producing a nickel alloy porous body includes a step of applying a coating material that contains a nickel alloy powder of nickel and an added metal, the nickel alloy powder having a volume-average particle size of 10 μm or less, onto a surface of a skeleton of a resin formed body having a three-dimensional mesh-like structure; a step of plating with nickel the surface of the skeleton of the resin formed body onto which the coating material has been applied; a step of removing the resin formed body; and a step of diffusing the added metal into the nickel by a heat treatment.
Abstract:
An inexpensive porous current collector having high durability is provided by forming a silver layer having high strength on a current collector formed from a nickel porous base material. Porous current collectors 8a and 9a are used in a fuel cell 101 including a solid electrolyte layer 2, a first electrode layer 3 on one side of the solid electrolyte layer, and a second electrode layer 4 on the other side. The porous current collectors each include: an alloy layer 60a, which is formed from a tin (Sn)-containing alloy, at least on the surfaces of continuous pores 52 of a nickel porous base material 60 having the continuous pores 52; and a silver layer 55 stacked on the alloy layer.
Abstract:
Provided are a manufacturing method and a manufacturing apparatus for an aluminum film in which moisture and oxygen do not intrude into a plating chamber. A manufacturing method for an aluminum film, in which aluminum is electrodeposited on a surface of a long, porous resin substrate imparted with electrical conductivity in a molten salt electrolytic solution, includes a step of transferring the substrate W into a plating chamber 1 through a sealing chamber 4 disposed on the entrance side of the plating chamber; a step of electrodepositing an aluminum film on the surface of the substrate W in the plating chamber 1; and a step of transferring the substrate having the aluminum film electrodeposited thereon from the plating chamber 1 through a sealing chamber 5 disposed on the exit side of the plating chamber 1, in which an inert gas is supplied into the plating chamber such that the plating chamber has a positive pressure relative to outside air, and the inert gas is forcibly discharged from an inert gas exhaust pipe 7 provided on each of the two sealing chambers.
Abstract:
A drum electrode, which is used for a device configured to plate a surface of a long base material having electrical conductivity with a metal, includes a power feeding layer, an insulating layer which covers a surface of the power feeding layer, and a projecting electrode which projects from the surface of the insulating layer and is electrically connected to the power feeding layer, in which the projecting electrode is provided linearly in the circumferential direction of the drum electrode.
Abstract:
An electrode for a power storage device includes carbon nanotubes, graphene, an ionic liquid, and a three-dimensional network metal porous body which holds the carbon nanotubes, the graphene, and the ionic liquid in pore portions, wherein a ratio of a total amount of the carbon nanotubes and the graphene to an amount of the ionic liquid is more than or equal to 10% by mass and less than or equal to 90% by mass, and a mass ratio between the carbon nanotubes and the graphene is within a range of 3:7 to 7:3.
Abstract:
In an electrode according to the present invention including a three-dimensional network aluminum porous body as a base material, the electrode is a sheet-shaped electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the longitudinal direction and thickness direction of the electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the width direction and thickness direction of the electrode. The electrode is preferably obtained by subjecting the three-dimensional network aluminum porous body to at least a current collecting lead welding step, an active material filling step and a compressing step.
Abstract:
An electrode includes a metal porous-body sheet formed of a metal porous body having a skeleton, the skeleton having a three-dimensional network structure, and a metallic support body having a plate shape and disposed on one main surface of the metal porous-body sheet. The one main surface has a plurality of machined holes each formed perpendicularly to the one main surface, and at least some of the plurality of machined holes are disposed at equal intervals. The metallic support body has a plurality of through holes extending through two surfaces of the metallic support body, and at least some of the plurality of through holes are disposed at equal intervals. A center of each of the some of the plurality of machined holes and a center of each of the some of the plurality of through holes are shifted from each other in one direction in plan view.
Abstract:
A metal porous body includes: a metal framework; and a separation wall formed in one piece with the metal framework, the separation wall being composed of the same material as a material of the metal framework. A plurality of cells each having a polyhedral shape exist inside the metal porous body. A side of the polyhedral shape is constituted of the metal framework. A location in which an opening of a cell of the plurality of cells is closed by the separation wall exists inside the metal porous body, the opening being defined by a side of a polyhedral shape of the cell.
Abstract:
The present disclosure provides a flat metal sheet having a principal surface located on one side along a thickness direction, a plurality of struts, and a node part where end portions of the plurality of struts are connected to one another, wherein the strut and the node part form a mesh structure, and the plurality of the struts are in close contact with each other, and a plurality of through holes penetrating the principal surface in the thickness direction.