Abstract:
A metal air battery having an air purification module and a method of operating the metal air battery, the metal air battery including: a battery cell module configured to generate electricity using oxidation of a metal and reduction of oxygen; an air purification module including a first adsorption unit and being configured to supply air purified by the first adsorption unit to the battery cell module, the first adsorption unit being configured to adsorb an impurity; and a detection module configured to detect a concentration of the impurity, wherein the air purification module further includes a recycling unit configured to desorbs the impurity adsorbed into the first adsorption unit; and a controller configured to control an operation of the recycling unit based on the concentration of the impurity detected by the detection module.
Abstract:
A metal-air battery including: a battery cell module for generating electricity by oxidizing a metal and reducing oxygen; and an air purification module in fluid communication with the battery cell module for purifying air, wherein a first portion of the air purification module is configured to supply purified air to the battery cell module, and a second portion of the air purification module is configured to receive air discharged from the battery cell module.
Abstract:
An electrolyte for a lithium air battery and lithium air battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 and a lithium salt:
Abstract:
A metal-air battery includes first and second cells, each cell including a negative electrode metal layer, a negative electrode electrolytic film, a positive electrode layer configured to use oxygen as an active material, and a gas diffusion layer, wherein the negative electrode metal layer, the negative electrode electrolytic film, the positive electrode layer, and the gas diffusion layer are sequentially disposed, wherein each cell has an open surface through which at least a portion of the gas diffusion layer is in fluid communication with, outside air, wherein the first and second cells contact each other, and wherein a direction of a first open surface of the first cell is different from a direction of a second open surface of the second cell.
Abstract:
A lithium air battery includes: a composite cathode including a porous material and a first electrolyte; an anode including lithium metal, and an oxygen blocking layer disposed between the composite cathode and the anode, wherein a weight ratio of the porous material and the first electrolyte in the composite cathode is less than about 1:3. Also a method of manufacturing the lithium air battery.
Abstract:
A composite for a lithium air battery, wherein the composite is represented by Formula 1: MCxN(1−x) Formula 1 wherein M in Formula 1 is at least one selected from a metal element and a metalloid element, and 0
Abstract:
An all-solid secondary battery including: a cathode layer including a cathode active material layer; an anode layer; and a solid electrolyte layer including a solid electrolyte, wherein the solid electrolyte layer is disposed between the cathode layer and the anode layer, wherein the anode layer includes an anode current collector, a first anode active material layer in contact with the solid electrolyte layer, and a second anode active material layer disposed between the anode current collector and the first anode active material layer, wherein the first anode active material layer includes a first carbonaceous anode active material, and the second anode active material layer.
Abstract:
An all-solid secondary battery including: a cathode layer including a cathode active material layer; an anode layer; and a solid electrolyte layer including a solid electrolyte, wherein the solid electrolyte layer is disposed between the cathode layer and the anode layer, wherein the anode layer includes an anode current collector, a first anode active material layer in contact with the solid electrolyte layer, and a second anode active material layer disposed between the anode current collector and the first anode active material layer, wherein the first anode active material layer includes a first carbonaceous anode active material, and the second anode active material layer.
Abstract:
A composite electrolyte includes: a positively charged particle, a particle that is positively charged by having a coordinate bond with a cation, or a combination thereof; and a lithium salt.
Abstract:
A mixed conductor, a method of preparing the same, and a cathode, a lithium-air battery, and an electrochemical device each including the mixed conductor. The mixed conductor is represented by Formula 1 and having electronic conductivity and ionic conductivity: LixMO2-δ Formula 1 wherein, in Formula 1, M is a Group 4 element, a Group 5 element, a Group 6 element, a Group 7 element, a Group 8 element, a Group 10 element, a Group 11 element, a Group 12 element, or a combination thereof, and 0