Abstract:
A data demodulation process rate is varied according to a reproduction state, thereby reducing power consumption while maintaining a reading performance in a favorable state. A channel rate process data demodulation device performs a data demodulation process by employing channel bit frequency. Further, a half rate process data demodulation device performs a data demodulation process by employing frequency half as high as the channel bit frequency. These devices demodulate digital data from an optical recording medium. A process rate switching device switches a process rate at data demodulation, whereby demodulation is performed by switching between the data demodulation devices according to a quality of a reproduction signal, so as to reproduce the digital data recorded on the optical recording medium.
Abstract:
A data demodulation process rate is varied according to a reproduction state, thereby reducing power consumption while maintaining a reading performance in a favorable state. A channel rate process data demodulation device performs a data demodulation process by employing channel bit frequency. Further, a half rate process data demodulation device performs a data demodulation process by employing frequency half as high as the channel bit frequency. These devices demodulate digital data from an optical recording medium. A process rate switching device switches a process rate at data demodulation, whereby demodulation is performed by switching between the data demodulation devices according to a quality of a reproduction signal, so as to reproduce the digital data recorded on the optical recording medium.
Abstract:
An information reproduction apparatus and method according to the present invention are provided so as to solve the problem that signal quality is degraded in a normal signal part when always performing a correction of a transient in reproducing information recorded in a medium, and the sag cancellation controller (103) detects whether the pickup output signal (S101) is normal or abnormal, and the sag cancellation part (104) performs a correction of a transient only during a period when the pickup output signal (S101) is detected as abnormal, thereby preventing degradation of signal quality, which is caused by performing a correction of a transient on a normal signal part, and an appropriate correction of a transient can be performed on an abnormal signal part, thereby enabling a stable reproduced signal (S104) to be obtained.
Abstract:
A maximum likelihood encoding apparatus is provided, which is constructed to be compatible with a plurality of signals reproduced from a plurality of recording media having a plurality of types. The apparatus comprises a path metric value generation section for generating a plurality of path metric values corresponding to a recording medium having one of the plurality of types based on a type signal indicating the one of the plurality of types, and a path memory section for detecting digital information from a signal reproduced from the recording medium having the one of the plurality of types based on the plurality of path metric values.
Abstract:
When generating a sampling clock of an A/D converter for digitizing a playback signal from an optical disc, an over sampling clock generated by a PLL is used. Further, zerocross position information and reference information of a playback digital signal that is obtained by A/D conversion using the over sampling clock are converted into those synchronized with the channel bit clock by an operation cycle conversion unit, and then supplied to a PRML signal processing unit and a level judgement binarization unit.
Abstract:
A digital signal reproducing apparatus includes an analog to digital converter for sampling and quantizing a signal read from an optical recording medium in accordance with a reproduced clock having a frequency which is one-half of a channel bit frequency and outputting an obtained digital RF signal, an offset compensation circuit for reducing an offset component in an amplitude direction from the digital RF signal, and a simplified interpolation filter for reconstructing a signal indicating a predetermined pattern recorded in the optical recording medium from the output signal of the offset compensation circuit and outputting the reconstructed signal. A control operation is performed to reduce the magnitudes of respective values shown by first phase error information on a section with the predetermined pattern and by second phase error information on a section other than the section with the predetermined pattern.
Abstract:
An information reproduction device according to the present invention is a device for accessing a recording medium having first address information and second address information recorded thereon. The first address information is represented by a shape formed on the recording medium in advance; and the second address information is recorded on the recording medium together with data. The information reproduction device includes a head section for accessing the recording medium to generate a reproduction signal; a first detection section for detecting the first address information from the reproduction signal; a second detection section for detecting the second address information from the reproduction signal; and a control section for, based on a detection result of either the first detection section or the second detection section which detected the address information first, controlling an access after the detection to the recording medium.
Abstract:
An optical disc device of the present invention obtains a reproduction quality that is independent of a mark distortion by receiving a signal that is obtained from an A/D converter for digitizing a reproduction signal of an optical disc medium and an offset correction means for performing offset correction, accurately measuring a mark distortion factor in a mark pattern having a long recording width by means of a mark distortion factor measuring means, and selecting one of output signals from a PRML signal processing means and a level judge binarization means by means of a digital data demodulation selection means by utilizing the measured mark distortion factor as a judgement criterion, to be used as a demodulation binary signal.
Abstract:
After a playback RF signal 3 detected from an optical disc medium 1 is waveform-shaped, it is converted into a digital RF signal 6 with a sampling clock 8 having a cycle twice as long as a channel clock. Thereafter, a first offset correction circuit 9 corrects an offset fluctuation in a high frequency band, and a digital adaptive equalizer 23 performs adaptive equalization, and then a second offset correction circuit 27 corrects an offset component that remains after the offset correction by the first offset correction circuit 9, thereby demodulating a digital binary signal 37. Therefore, even when high-speed playback is carried out and an asymmetry depending on the recording quality is large, a reduction in power consumption can be realized while maintaining high-performance playback. Consequently, it is possible to provide an optical disc playback apparatus which can realize sufficient playback performance at low power consumption.
Abstract:
In a jitter detection apparatus, a playback RF signal 3 detected from an optical disc medium 1 is subjected to waveform shaping, and thereafter, converted into a digital RF signal 6 with a sampling clock having a cycle twice as long as a cycle of a channel clock. Thereafter, an offset variation in a high-frequency band is corrected by an offset correction circuit 9, and data which are missing in the time direction are restored by a Nyquist interpolation filter 23. Then, positions where jitter is to be extracted are selected from an output signal of the Nyquist interpolation filter 23, by a jitter detection preprocessing circuit 28, according to the playback speed of the optical disc medium 1 and the arithmetic capacity of a digital signal operation circuit 29, whereby highly accurate jitters can be extracted by using the digital signal operation circuit 29.