Abstract:
Co-channel communications methods, systems, and devices are provided. Embodiments can be utilized to allow multiple users on one time slot (MUROS). For example, a method for wireless communication by a first remote station can comprise receiving a first co-channel signal that has a first amplitude and a second co-channel signal that has a second amplitude, wherein a difference between the first amplitude and the second amplitude is less than a threshold; selecting one of the first co-channel signal and the second co-channel signal; and demodulating the selected co-channel signal. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Enhancing mobile communication performance under Voice services over Adaptive Multi-user channels on One Slot (VAMOS) pairing with receiving a multiplexed signal, wherein the multiplexed signal includes a first user signal having a first amplitude and a second user signal having a second amplitude, computing a subchannel power imbalance ratio (SCPIR) based on the first amplitude of the first user signal and the second amplitude of the second user signal, performing a channel estimation for the first user signal and the second user signal, obtaining at least one channel parameter from the channel estimation, and performing a user signal demodulation for the first user signal or the second user signal using the at least one channel parameter.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection.
Abstract:
Methods are provided that optimize Voice over Adaptive Multi-user channels on One Slot (VAMOS) communications by recognizing that up to four independent communications are located on the same device, and assigning them to sub-channels of the same VAMOS channel. A VAMOS-capable multi-SIM wireless device such as a dual-SIM dual active (DSDA) device may have up to four simultaneous active calls on the same access network. When assigned to the same VAMOS channel, the up to four active calls may be merged to all use the same radio on the device.
Abstract:
Co-channel operation systems, methods, and devices are discussed in this document. Some embodiments can include remote stations configured for co-channel operation with one or more other remote stations. Remote stations can generally comprise a processor and a memory in electronic communication with the processor. Instructions can be stored in the memory, and when executed by the processor cause a remote station to receive a first data sequence from a first base station; use the first data sequence to distinguish a first signal transmitted by the first base station from unwanted signals transmitted by one or more other base stations; and demodulate the first signal. Other aspects, embodiments, and features are also claimed and described.
Abstract:
A method for wireless communication is described. A slow associated control channel block is received. It is determined that the slow associated control channel block fails an integrity check. A correlation level between the slow associated control channel block and one or more stored slow associated control channel blocks is determined. The stored slow associated control channel blocks are set based on a maximum correlation level. Other aspects, embodiments, and features are also claimed and described.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection.
Abstract:
A method of wireless communication by a user equipment includes determining an allocation of a set of tones in a symbol for conveying data. The method further includes determining to use m-ary phase shift keying (MPSK) to modulate the data onto a subset of tones of the set of tones. The method further includes modulating the data onto the subset of tones based on a mapping, wherein the mapping maps pairs of data values with a largest Hamming distance from each other to pairs of constellation points with a maximum Euclidean distance from each other.
Abstract:
A method of wireless communication by a user equipment includes determining an allocation of a set of tones in a symbol for conveying data. The method further includes determining to use m-ary phase shift keying (MPSK) to modulate the data onto a subset of tones of the set of tones. The method further includes modulating the data onto the subset of tones based on a mapping, wherein the mapping maps pairs of data values with a largest Hamming distance from each other to pairs of constellation points with a maximum Euclidean distance from each other.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection.