Multiplexing signals with scalable numerology for new radio (NR) networks

    公开(公告)号:US10938496B2

    公开(公告)日:2021-03-02

    申请号:US16453821

    申请日:2019-06-26

    Abstract: Wireless communication devices are adapted to facilitate multiplexing of signals. According to one example, a wireless communication device can multiplex a first signal and a second signal for transmission across a first resource element and a second resource element. The first resource element may utilize a first subcarrier in a first symbol employing a first numerology. The second resource element may utilize a second subcarrier in a second symbol employing a second numerology that is different from the first numerology, where the second subcarrier overlaps in frequency at least a portion of the first subcarrier. The first and second symbols including the multiplexed first and second signals may subsequently be transmitted. Other aspects, embodiments, and features are also included.

    Polar code construction for low-latency decoding and reduced false alarm rate with multiple formats

    公开(公告)号:US10784991B2

    公开(公告)日:2020-09-22

    申请号:US15988853

    申请日:2018-05-24

    Abstract: A transmitter may select a control message format of a set of possible control message formats, each of the possible control message formats corresponding to a different number of information bits. The transmitter may polar encode a payload in the selected control message format to generate and transmit a polar-encoded codeword, the payload having a same number of bits for any of the set of possible control message formats. A receiver may determine the set of possible control message formats for the polar-encoded codeword, and may decode the polar-encoded codeword to identify a candidate control message. The receiver may identify a control message format in the set of possible control message formats for the candidate control message based on multiple hypotheses corresponding to the different number of information bits, and may obtain control information from the candidate control message based on the identified control message format.

    Bandwidth group (BWG) for enhanced channel and interference mitigation in 5G new radio

    公开(公告)号:US10687252B2

    公开(公告)日:2020-06-16

    申请号:US15466663

    申请日:2017-03-22

    Abstract: A method at a scheduling entity might include determining that interference is present from a neighboring scheduling entity, which implements a second subcarrier spacing that is different from a first subcarrier spacing of the scheduling entity. The scheduling entity might request the neighboring scheduling entity to negotiate a bandwidth group (BWG), where the BWG is a bandwidth occupied by downlink subcarriers within which a transmission parameter is maintained. The method might include negotiating a bandwidth of the bandwidth group and transmitting, if negotiating is successful, downlink data to a scheduled entity served by the scheduling entity according to the negotiated bandwidth. The transmission parameter might be a precoder, rank, modulation order, power inside each BWG, or numerology. The numerology might be scalable and might be a combination of subcarrier spacing and cyclic prefix (CP) overhead, The subcarrier spacing might be scaled while keeping constant the CP overhead as a percentage of a symbol duration.

    Payload size ambiguity and false alarm rate reduction for polar codes

    公开(公告)号:US10686469B2

    公开(公告)日:2020-06-16

    申请号:US15953239

    申请日:2018-04-13

    Abstract: Size ambiguity and false alarm rate reduction for polar codes. A user equipment (UE) may determine a decoding candidate bit sequence for a polar-encoded codeword having a codeword size based on a decoding hypothesis for control information having a particular bit length of multiple different bit lengths for the codeword size. The UE may calculate an error detection code (EDC) value for a payload portion of the decoding candidate bit sequence using an EDC algorithm, and may initialize an EDC variable state with at least one non-zero bit value. Scrambling or interleaving of bits may also be performed prior to, or after, polar encoding and may depend on the bit length. In examples, information bits may be bit-reversed prior to generating an EDC value. In examples, the encoded bits may include multiple EDC values to assist the UE in performing early termination and to reduce a false alarm rate.

    Reinforced list decoding
    20.
    发明授权

    公开(公告)号:US10476998B2

    公开(公告)日:2019-11-12

    申请号:US15619115

    申请日:2017-06-09

    Abstract: Certain aspects of the present disclosure relate to techniques and apparatus for increasing decoding performance and/or reducing decoding complexity. A transmitter may divide data of a codeword into two or more sections and then calculate redundancy check information (e.g., a cyclic redundancy check or a parity check) for each section and attach the redundancy check information to the codeword. A decoder of a receiver may decode each section of the codeword and check the decoding against the corresponding redundancy check information. If decoding of a section fails, the decoder may use information regarding section(s) that the decoder successfully decoded in re-attempting to decode the section(s) that failed decoding. In addition, the decoder may use a different technique to decode the section(s) that failed decoding. If the decoder is still unsuccessful in decoding the section(s), then the receiver may request retransmission of the failed section(s) or of the entire codeword.

Patent Agency Ranking