Abstract:
Methods, systems, and apparatuses are described for advertising information corresponding to beamforming techniques supported by base stations of a wireless communications system, which in various examples may include analog, digital, and/or hybrid beamforming techniques supported by millimeter wave (mmW) base stations. Advertising of supported beamforming techniques may involve transmissions over a nearby long term evolution (LTE) or another carrier frequency network (e.g., in case of LTE/lower carrier frequency assisted mmW wireless access networks). Alternatively or additionally, advertising may employ broadcasting from a mmW base station, which may include mmW beam sweeps. A UE may receive information corresponding to supported beamforming techniques, and may use the received information to select a particular mmW base station with which to communicate or to determine a transmission strategy for communicating with a particular mmW base station, or both.
Abstract:
Methods, systems, and devices are described for acquiring a network by a user equipment (UE) by concurrently scanning for a network signal on supported frequencies by two or more antennas. In one aspect, a method may include searching by a first antenna for a first signal on a first group of supported frequencies while concurrently searching by a second antenna for the first signal on a second group of supported frequencies. The method may further include acquiring the first signal from the first antenna on a first frequency, and tuning the second antenna to the first frequency to acquire the wireless network. In one aspect, the first and second groups of supported frequencies may represent frequencies within a single frequency band or frequencies in multiple frequency bands. In one aspect, supported frequencies may be divided into multiple groups and each group may be searched by a corresponding antenna.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a processor configured to determine a time when the plurality of page bursts for the first radio access technology (RAT) will be received. The processor further configured to allocate a portion of time between page bursts for use by a second RAT.
Abstract:
Various embodiments leverage the typical manner in which a RAT selects a supported frequency band listed in its acquisition database and the standard communications with its network indicating the supported frequency bands to avoid potential coexistence events with one or more other RATs. In particular, various embodiments include methods for avoiding band interference between RATs operating on a multi-SIM communication device by identifying the frequency bands available to each of the RATs, comparing the identified frequency bands to determine whether any RAT's frequency bands will interfere with one or more other RAT's frequency bands, and in response to determining that there is a possibility of frequency band interference, removing those interfering frequency bands from that RAT's acquisition database. As a result, during standard communications, that RAT will report to its network that it supports only non-interfering frequency bands.
Abstract:
A MSIM UE may perform network operations for each network subscription. However, if the MSIM UE employs subscriptions for the same network, these operations may be performed redundantly. By notifying the network of multiple subscriptions at the UE and associating the multiple subscriptions at the network, the present invention provides power-saving at the UE and reduces network signaling overhead by optimizing communication for MSIM UE. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to indicate to a network that the UE is associated with a plurality of network subscriptions, the plurality of network subscriptions including at least a first network subscription and a second network subscription, transmit location information using the first network subscription to the network, wherein the location information corresponds to a UE location, and receive data associated with the second subscription from the network.
Abstract:
Various embodiments may provide systems and methods for supporting wireless device paging in a network, such as a Fifth Generation (5G) New Radio (NR) (5GNR) network, etc. In various embodiments, a wireless device may determine whether to decode a Physical Downlink Shared Channel (PDSCH) paging message based at least in part on an indication in a received downlink control information (DCI) message.
Abstract:
Techniques are provided to initiate signal transmissions for possible opportunistic reception by a mobile device, and/or to initiate opportunistic reception of signal transmissions for use in mobile device position location estimation. For example, a mobile device may use assistance data to identify a first signal to be transmitted over a first frequency band and a second signal to be transmitted over a second frequency band during a specific period of time. At least a portion of the second frequency band may be outside of the first frequency band. The mobile device subsequently attempts to opportunistically receive at least the first signal and the second signal via a receiver tuned to a reception frequency band that encompasses at least the first frequency band and the second frequency band. The mobile device may then process the opportunistically received signals to obtain measurements corresponding to at least the first and second signals.
Abstract:
Minimizing conflicts between different radio access technologies (RATs) is disclosed herein which include monitoring, by a user equipment (UE), a first use of a UE Radio Frequency (RF) resource by a first Radio Access Technology (RAT). The UE monitors a second use of the UE resource by a second RAT. The UE is served by a current serving cell in the second RAT. The UE may also determine a percentage of conflict between a first use of a UE resource by a first RAT and the second use of the UE resource by the second RAT over a predefined period of time, and initiating, by the UE, a cell reselection attempt to one or more neighboring cells of a plurality of neighboring cells serving the second RAT based on the determined percentage of conflict exceeding a predetermined threshold.
Abstract:
Methods, systems, and devices for wireless communication are described for redirection of a session initiation protocol (SIP) INVITE. A multi-subscriber identification module user equipment (multi-SIM UE) may intelligently determine when to redirect a SIP INVITE message to control on which of multiple networks a communication session is established. The multi-SIM UE may receive a SIP INVITE from a first user equipment (UE) requesting to establish a SIP session on a first network, the SIP INVITE including a first network address of the multi-SIM UE that is associated with a first SIM of the multi-SIM UE. The multi-SIM UE may, based at least in part on determining that a redirection criterion is satisfied, transmit a SIP redirection response including a second network address of the multi-SIM UE on a second network that is associated with a second SIM of the multi-SIM UE.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may decrease a first value of a transmission power of a first component carrier relative to a second value of a transmission power of a second component carrier based at least in part on the second component carrier carrying control information for the user equipment, wherein the second value of the transmission power of the second component carrier is based at least in part on a first maximum power reduction value identified for carrier aggregation. The user equipment may increase the transmission power of the second component carrier to a third value based at least in part on a second maximum power reduction value identified for single carrier. Numerous other aspects are provided.