Abstract:
Methods, systems, computer-readable media, and apparatuses for remote patient monitoring and event detection are presented. For example, one method includes receiving, by a computing device via wireless communication, one or more sensor signals from a sensor associated with a patient; obtaining a patient condition based on the one or more sensor signals using a trained machine-learning (“ML”) model; and responsive to detecting an emergency condition based on the patient condition, providing an indication of the emergency condition.
Abstract:
A time period associated with each of a plurality of tasks included in a current instance of WWAN data capture/processing by a WLAN processor and a WWAN processor is determined. A total time period comprising the respective time periods of each task is compared to an overall time budget criterion to obtain a comparison outcome. A change in at least one of the tasks based on the comparison outcome is implemented. The change results in an adjustment of the total time period associated with a next instance of WWAN data capture/processing by the WLAN processor and the WWAN processor.
Abstract:
A user equipment (UE) provides a capability-type indication for each of one or more UE capabilities. Each indication corresponds to a capability type, the type being one of a persistent capability or a second-type capability. Information corresponding to the capability-type indication may be provided to an eNB associated with the UE by RRC signaling. The UE provides a capability-change indication for each of one or more UE capabilities that has changed capability type. Information corresponding to the capability-change indication may be provided to an eNB by lower layer signaling, RRC signaling, or a combination thereof. Capability change information may be sent to the eNB autonomously by the UE, or in response to an inquiry from the eNB. The inquiry from the eNB may be triggered by the UE.
Abstract:
Methods, systems, and devices are provided that may enable wireless communications systems that utilize flexible bandwidths to transmit at the same or similar rates as wireless communications systems that utilize normal bandwidths. Some embodiments identify a target rate for a broadcast channel of a first bandwidth carrier system and transmit broadcast information utilizing the target rate. The target rate is higher than a scaled rate that results from scaling the rate for a broadcast channel of a second bandwidth carrier system by a bandwidth scaling factor. The first and second bandwidth carrier systems may be flexible and normal bandwidth carrier systems, respectively. To compensate for the bandwidth scaling and effectively maintain the rate at which information is transmitted in normal bandwidth carrier systems, different optimized schedules for system and master information transmission, different channelization codes and channels, and/or different scaled spreading factors may be identified and utilized.
Abstract:
Methods, systems, and devices are provided that may address problems pertaining to effective transmit power control of a communications device operating in a wireless communications system. Some embodiments utilize mechanisms or techniques with dynamically adaptive steps sizes for transmit power control based on one or more trends. Some of these techniques may identify a trend in the transmit power control (TPC) commands and may adapt a TPC step size as a result. Other techniques may be utilized in which transmit power control is based on multiple interference estimates in a frame slot. Having multiple interference estimates at sub-slot intervals may provide additional transmit power control by allowing more transmit power adjustments, or more appropriate adjustments, for each slot. Metric calculations may be performed on one or more techniques to determine appropriate TPC operations.
Abstract:
A method of beacon detection performed by a small cell device includes: exchanging beacon parameters with a user equipment (UE); entering a low power mode after exchanging the beacon parameters with the UE; receiving, from the UE, a beacon in a random access channel (RACH) preamble containing the beacon parameters while in the low power mode; entering a high power mode in response to receiving the beacon; and associating with the UE while in the high power mode. The method of beacon detection allows a small cell device to transition from a low power mode to a high power mode in an efficient manner. The transmission may be triggered by a user equipment that is entering a service area of the small cell device.
Abstract:
Methods, systems, and devices for facilitating mobility between flexible bandwidth systems and other bandwidth systems are provided. These tools and techniques that provide mobility between different bandwidth systems may facilitate supporting circuit-switched (CS) services, such as CS voice services. Some embodiments provide for determining flexible bandwidth capable devices, such as user equipment. Some embodiments involve core network redirection where a core network may direct the handling of circuit-switched services when a flexible bandwidth system does not support the CS services. Some examples provide for radio access network determined handling of CS services when a flexible bandwidth system may not support the CS services. Some embodiments provide for transitioning to a flexible bandwidth system. Some embodiments provide for transitioning from flexible bandwidth systems to non-flexible bandwidth systems that have no support for some or all CS services, other flexible bandwidth systems, and/or systems that natively support CS voice services.
Abstract:
Disclosed are systems, apparatuses, processes, and computer-readable media for wireless communications. For example, a computing device can transmit a number of fake inter-UE coordination (IUC) messages to reserve one or more resources for initial transmissions by the computing device. The computing device can receive one or more packets on at least one of the one or more resources. The computing device can further determine whether at least one of the one or more packets were transmitted by an attacker based on a jamming threshold.
Abstract:
A method of completing a transaction for a UE includes: receiving, at roadside equipment, a position message indicating a position of the UE; receiving, at the roadside equipment, a transaction message from the UE, the transaction message being separate from the position message and including an encrypted token containing information associated with the UE to enable completion of the transaction; determining that the position message and the transaction message are cryptographically bound; decrypting the encrypted token to produce a decrypted token; determining a presence of the UE in a transaction region; and completing the transaction using the information contained in the decrypted token in response to determining that the position message and the transaction message are cryptographically bound and determining the presence of the UE in the transaction region.
Abstract:
Erratic driving behavior may be detected at an origination vehicle based on sensor information at the origination vehicle. Techniques further provide for generating alert message that includes an indication of the detection of the erratic driving behavior as well as location and/or heading of the vehicle this message can be wirelessly transmitted from the origination vehicle. Techniques may further provide for propagating the message at a receiving device by receiving a first alert message at the receiving device indicative of the location, heading, and/or detection of erratic driving behavior of the origination vehicle, and transmitting a second alert message with similar information.