Abstract:
In a multi-subscription wireless communication device with a shared radio frequency (RF) resource supports an active data communication on a first network of a first SIM by performing tune-aways to support a subscription on a second SIM. After a tune-away of the shared RF to the second network, the wireless communication device may identify scheduled packet downlink acknowledgment/non-acknowledgment (ACK/NACK) message transmissions on the modem stack associated with the first SIM. The wireless communication device may determine whether a next scheduled packet downlink ACK/NACK (PDAN) message transmission to the first network is missed, and if so, increment a PDAN failure counter on the modem stack associated with the first SIM. If the value of the PDAN failure counter on the modem stack associated with the first SIM is equal to a preset threshold, the wireless communication device may force the shared RF resource to tune back to the first network.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection. Other aspects, embodiments, and features are also claimed and described.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection.
Abstract:
A method for receiving cell broadcast messages is described. The method includes communicating with a first cell. The method also includes switching to communicating with a second cell. A cell broadcast channel is read after switching cells. The method further includes switching from a dedicated mode to a packet idle mode. The cell broadcast channel is reread once after switching from a dedicated mode to a packet idle mode. Other aspects, embodiments and features are also claimed and described.
Abstract:
A method for receiving cell broadcast messages is described. The method includes communicating with a first cell. The method also includes switching to communicating with a second cell. A cell broadcast channel is read after switching cells. The method further includes switching from a dedicated mode to a packet idle mode. The cell broadcast channel is reread once after switching from a dedicated mode to a packet idle mode. Other aspects, embodiments and features are also claimed and described.
Abstract:
The present patent application improves DARP by allowing multiple users on one time slot (MUROS). It comprises means and instructions for sharing signals on a single channel, comprising setting up a new connection, allocating a new time slot if there is an unused time slot on a channel frequency, selecting an used time slot for the new connection to share with an existing connection if there is not an unused time slot on the channel frequency, and selecting a different training sequence code for the new connection if the used time slot on the channel frequency has been selected for the new connection to share with an existing connection.
Abstract:
The various embodiments include methods for managing how a MSMS communication device that is accessing an arbitrary combination of multiple telephony networks processes paging collisions. The embodiment methods promote improving a subscription's page blocking rate by causing a MSMS communication device to implement a retransmission remedial action for a blocked subscription. In the various embodiments, the MSMS communication device may implement the retransmission remedial action by increasing a blocked subscription's priority during a subsequent retransmission interval to increase the likelihood that the blocked subscription will receive a repeated page message from its mobile network during this retransmission interval. In some embodiments, the blocked subscription's current priority may be based on the number of retransmission intervals that are presently occurring.
Abstract:
Methods are provided that enable mitigation of desense from a transmission on a first radio frequency (RF) resource associated with a first SIM to a receiver circuit of a second RF resource associated with a second SIM in the same device. A multi-SIM wireless device, such as a dual-SIM dual active (DSDA) device, may utilize characteristics of uplink and downlink signals to determine an optimal action that reduces interference from conflicting signals. Mitigating actions do not require involvement on the network side, and may greatly improve processing time for implementing interference prevention measures.
Abstract:
A method for receiving cell broadcast messages is described. The method includes communicating with a first cell. The method also includes switching to communicating with a second cell. A cell broadcast channel is read after switching cells. The method further includes switching from a dedicated mode to a packet idle mode. The cell broadcast channel is reread once after switching from a dedicated mode to a packet idle mode. Other aspects, embodiments and features are also claimed and described.
Abstract:
Apparatus and methods are disclosed to provide for a multi-SIM wireless user equipment configured for block-level, or slot-level tune-away operations enabling simultaneous communication with a plurality of channels. The first and second channels may correspond to different RANs, each of which the user equipment may subscribe to as corresponding to information in a plurality of SIMs at the user equipment. In other examples, the first and second channels may correspond to different cells within a single RAN. In either case, the tune-away operations disclosed provide for reduced data loss at the first channel and in some examples improved communication performance at the second channel. Other aspects, embodiments, and features are also claimed and described.