Abstract:
Methods, systems, and devices for wireless communications supporting techniques for enhanced line-of-sight (LOS) communications with analog multi-path beamforming are described. A first wireless device may receive, from a second wireless device, an indication of a capability of the second wireless device to concurrently transmit first signaling in a first analog beamforming direction using a first transmission configuration indicator (TCI) state corresponding to a LOS mode, and second signaling in a second analog beamforming direction using a second TCI state corresponding to an indirect LOS mode. The first wireless device may then receive, from the second wireless device, a first downlink message in the first analog beamforming direction using the first TCI state concurrently with a second downlink message in the second analog beamforming direction using the second TCI state.
Abstract:
This disclosure provides systems, apparatus, methods, and computer-readable media for beam switching by a repeater node that forwards communications from one of a first node or a second node to the other of the first node or the second node. For example, after a change of position by the second node, the first node may provide the repeater node an instruction to perform a beam change operation to communicate with the second node. In some aspects, performing the beam change operation by the repeater node may improve reliability of wireless communications, such as by focusing signal energy in a particular direction. Further, a beam change delay time interval or a scheduling of the beam change delay time interval may be selected based on scheduling associated with other nodes, which may reduce a number of messages sent to the repeater node (such as by reducing instructions to change beam directions).
Abstract:
This disclosure provides systems, methods and apparatus for finite rate of innovation channel estimation. In one aspect an apparatus for equalizing received signals is provided. The apparatus comprises a signal per-processing unit configured to process received pilot signals transmitted through a sparse channel into at least one composite signal. The at least one composite signal further includes a plurality of signal peaks. The apparatus further comprises a Fourier transform unit configured to transform the at least one composite signal into frequency-domain data and a channel estimation unit configured to estimate at least one delay value and at least one peak value from the frequency-domain data.
Abstract:
Methods, systems, and devices for wireless communications are described. For instance, a first device may transmit a reference signal to a second device and the second device may measure self-interference at the second device. In a first example, the second device may transmit an indication of channel state information to the first device along with an interference report including a measure of the self-interference, which the first device may use to determine an MCS and/or a rank. In a second example, the second device may determine an MCS and/or rank based on measuring the self-interference. In some examples, the second device may transmit a first indication of the MCS and/or rank determined based on measuring the self-interference to the first device along with a second indication that the MCS and/or rank is associated with full-duplex communications at the second device.
Abstract:
Methods, systems, and devices for wireless communication are described. An FNC may be implemented to manage operations of a wireless fronthaul network. The FNC may monitor one or more network conditions and parameters of a network, which may include a fronthaul network and a radio access network. The fronthaul network may include at least one DU that supports wireless communications with a plurality of RUs via a plurality of fronthaul communication links, and the radio access network may include the plurality of RUs supporting communications for a plurality of wireless devices. The FNC may output, based on the one or more network conditions and the parameters, one or more fronthaul operation parameters for the at least one DU to support wireless communication for at least one RU of the plurality of RUs via one or more respective communication links of the plurality of communication links.
Abstract:
Methods, apparatuses, and computer-readable medium for fronthaul compression are provided. An example method may include receiving, from a UE, uplink data via one or more active tones of a plurality of tones in a symbol, the uplink data corresponding to an access vector. The example method may further include compressing the uplink data based on a linear transformation of a pseudo-access vector generated based on the access vector, the linear transformation including a matrix, the compression enabling a second network entity to decompress the compressed uplink data without knowing one or more locations associated with the one or more active tones. The example method may further include transmitting, to the second network entity, the compressed uplink data.
Abstract:
This disclosure provides systems, apparatus, methods, and computer-readable media for beam switching by a repeater node that forwards communications from one of a first node or a second node to the other of the first node or the second node. For example, after a change of position by the second node, the first node may provide the repeater node an instruction to perform a beam change operation to communicate with the second node. In some aspects, performing the beam change operation by the repeater node may improve reliability of wireless communications, such as by focusing signal energy in a particular direction. Further, a beam change delay time interval or a scheduling of the beam change delay time interval may be selected based on scheduling associated with other nodes, which may reduce a number of messages sent to the repeater node (such as by reducing instructions to change beam directions).
Abstract:
This disclosure provides systems, apparatus, methods, and computer-readable media for beam switching by a repeater node that forwards communications from one of a first node or a second node to the other of the first node or the second node. For example, after a change of position by the second node, the first node may provide the repeater node an instruction to perform a beam change operation to communicate with the second node. In some aspects, performing the beam change operation by the repeater node may improve reliability of wireless communications, such as by focusing signal energy in a particular direction. Further, a beam change delay time interval or a scheduling of the beam change delay time interval may be selected based on scheduling associated with other nodes, which may reduce a number of messages sent to the repeater node (such as by reducing instructions to change beam directions).