Abstract:
A videoconferencing endpoint includes at least one processor a number of microphones and at least one camera. The endpoint can receive audio information and visual motion information during a teleconferencing session. The audio information includes one or more angles with respect to the microphone from a location of a teleconferencing session. The audio information is evaluated automatically to determine at least one candidate angle corresponding to a possible location of an active talker. The candidate angle can be analyzed further with respect to the motion information to determine whether the candidate angle correctly corresponds to person who is speaking during the teleconferencing session.
Abstract:
A videoconferencing endpoint includes at least one processor a number of microphones and at least one camera. The endpoint can receive audio information and visual motion information during a teleconferencing session. The audio information includes one or more angles with respect to the microphone from a location of a teleconferencing session. The audio information is evaluated automatically to determine at least one candidate angle corresponding to a possible location of an active talker. The candidate angle can be analyzed further with respect to the motion information to determine whether the candidate angle correctly corresponds to person who is speaking during the teleconferencing session.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing endpoint includes at least one processor a number of microphones and at least one camera. The endpoint can receive audio information and visual motion information during a teleconferencing session. The audio information includes one or more angles with respect to the microphone from a location of a teleconferencing session. The system evaluates the audio information is evaluated to determine at least one candidate angle corresponding to a possible location of an active talker. The candidate angle can be analyzed further with respect to the motion information to determine whether the candidate angle correctly corresponds to person who is speaking during the teleconferencing session. The person's face can then be framed within a frame view.
Abstract:
Methods and systems for cancelation of table noise in a speaker system used for video or audio conferencing are disclosed. Table noise is cancelled by using a vertical microphone array to distinguish the tilt angle of sound received by a microphone. If the sound is close to horizontal, the audio is muted. If the sound is above a given angle from horizontal, it is not muted, as this indicates a person speaking. This eliminates paper rustling, keyboard clicks and the like.
Abstract:
A videoconference apparatus and method coordinates a stationary view obtained with a stationary camera to an adjustable view obtained with an adjustable camera. The stationary camera can be a web camera, while the adjustable camera can be a pan-tilt-zoom camera. As the stationary camera obtains video, participants are detected and localized by establishing a static perimeter around a participant in which no motion is detected. Thereafter, if no motion is detected in the perimeter, any personage objects such as head, face, or shoulders which are detected in the region bounded by the perimeter are determined to correspond to the participant.
Abstract:
A videoconferencing endpoint includes at least one processor a number of microphones and at least one camera. The endpoint can receive audio information and visual motion information during a teleconferencing session. The audio information includes one or more angles with respect to the microphone from a location of a teleconferencing session. The system evaluates the audio information is evaluated to determine at least one candidate angle corresponding to a possible location of an active talker. The candidate angle can be analyzed further with respect to the motion information to determine whether the candidate angle correctly corresponds to person who is speaking during the teleconferencing session. The person's face can then be framed within a frame view.
Abstract:
A videoconferencing system has a plurality of displays arranged side-by-side. Top loudspeakers are arranged adjacent the tops of the displays, and bottom loudspeakers are arranged adjacent the bottoms of the displays. A control unit operatively coupled to the displays and the loudspeakers routes video to each of the displays and routes audio corresponding to each display to any of the top and bottom loudspeakers arranged adjacent the display. Thus, the top and bottom loudspeakers form a vertical pair of loudspeakers that output the corresponding audio for its respective display. In this way, the audio for the video of a given display is perceived by participants to originate from the center of the given display. If one of the loudspeakers is not provided, gain setting and mixing between adjacent sets of loudspeakers can produce a virtual loudspeaker for the one that is missing.
Abstract:
A videoconferencing endpoint includes at least one processor a number of microphones and at least one camera. The endpoint can receive audio information and visual motion information during a teleconferencing session. The audio information includes one or more angles with respect to the microphone from a location of a teleconferencing session. The audio information is evaluated automatically to determine at least one candidate angle corresponding to a possible location of an active talker. The candidate angle can be analyzed further with respect to the motion information to determine whether the candidate angle correctly corresponds to person who is speaking during the teleconferencing session.