Abstract:
Provided is a producing method for a retardation film with a reverse wavelength dispersion property, which is highly reliable in terms of a small wavelength dispersion change and is low in display unevenness due to a position dependence of a retardation variation. The production method is designed for a retardation film which satisfies the following formulas (1) and (2): 0.7
Abstract:
A plastic optical fiber of the present disclosure includes: a core including a first region having a refractive index decreasing in a direction from a center of the core toward an outer edge of the core; and a trench disposed on an outer circumference of the core. When a refractive index difference between a refractive index n1 at the outer edge of the core and a refractive index n2 of the trench is defined as Δn and a thickness of the trench is defined as d (μm), a value of Δn×d is 0.010 or more and 0.06 or less.
Abstract:
There is provided a polarizing plate with a retardation layer being extremely thin and having excellent durability. A polarizing plate with a retardation layer includes a polarizer; a protective layer bonded onto one side of the polarizer through intermediation of a first adhesive layer; and a retardation layer bonded onto another side of the polarizer through intermediation of a second adhesive layer. The polarizer has a thickness of from 2 μm to 12 μm, a boric acid content of 18 wt % or more, an iodine content of 2.1 wt % or more, a single layer transmittance of 44.2% or more, a polarization degree of 98% or more, and an orientation function of 0.35 or more. The retardation layer has a thickness of 50 μm or less and a birefringence Δnxy of 0.0025 or more. The first and second adhesive layer each has a thickness of 2 μm or less.
Abstract:
There is provided a polarizing plate with a retardation layer being extremely thin and having excellent durability. A polarizing plate with a retardation layer includes a polarizer; a protective layer bonded onto one side of the polarizer through intermediation of a first adhesive layer; and a retardation layer bonded onto another side of the polarizer through intermediation of a second adhesive layer. The polarizer has a thickness of from 2 μm to 12 μm, a boric acid content of 18 wt % or more, an iodine content of 2.1 wt % or more, a single layer transmittance of 44.2% or more, a polarization degree of 98% or more, and an orientation function of 0.35 or more. The retardation layer has a thickness of 50 μm or less and a birefringence Δnxy of 0.0025 or more. The first and second adhesive layer each has a thickness of 2 μm or less.
Abstract:
Provided is a method capable of producing a retardation film having an elongated shape and having a slow axis in an oblique direction with high production efficiency while precisely controlling the direction of the slow axis and the variation of the direction. The method of producing a retardation film of the present invention includes: holding the left and right end portions of a film with left and right variable pitch-type clips configured to have clip pitches changing in a longitudinal direction, respectively; preheating the film; obliquely stretching the film; and releasing the clips holding the film. The oblique stretching includes making the change ratio of the clip pitch of the clips on one side in the traveling direction thereof and the change ratio of the clip pitch of the clips on the other side in the traveling direction thereof different from each other, and/or making the position at which the clip pitch of the clips on the one side in the traveling direction starts to change and the position at which the clip pitch of the clips on the other side in the traveling direction starts to change different from each other, while extending a distance between the left and right clips. In the present invention, the moving speeds of the clips are braked immediately before the holding step and/or during a time period from the holding step to the oblique stretching step.
Abstract:
The present invention provides a retardation film web having sufficient reversed wavelength dispersion characteristics and favorable for film lamination according to a roll-to-roll system. A retardation film web of the present invention includes a polycarbonate resin or a polyester carbonate resin, an orientation angle θ which is an angle between a slow axis and a width direction satisfies the following formula (I), and a ratio of an in-plane retardation R450 measured at a wavelength of 450 nm to an in-plane retardation R550 measured at a wavelength of 550 nm satisfies the following formula (II): 38°≦θ≦52° (I) R450/R550
Abstract:
The present invention provides a retardation film web having sufficient reversed wavelength dispersion characteristics and favorable for film lamination according to a roll-to-roll system. A retardation film web of the present invention includes a polycarbonate resin or a polyester carbonate resin, an orientation angle θ which is an angle between a slow axis and a width direction satisfies the following formula (I), and a ratio of an in-plane retardation R450 measured at a wavelength of 450 nm to an in-plane retardation R550 measured at a wavelength of 550 nm satisfies the following formula (II): 38°≦θ≦52° (I) R450/R550
Abstract:
There is provided a circularly polarizing plate that can prevent light leakage in an organic EL panel and can suppress the warping of the panel to reduce reflection unevenness in a panel surface. A circularly polarizing plate according to an embodiment of the present invention is used in an organic EL panel, and includes a polarizer and a retardation film directly bonded to the polarizer. In-plane retardations of the retardation film satisfy a relationship of Re(450)
Abstract:
There is provided a polarizing plate that achieves an excellent reflection hue. A polarizing plate according to an embodiment of the present invention is used in an organic EL panel, and includes a polarizer and a retardation film. In-plane retardations of the retardation film satisfy a relationship of Re(450)
Abstract:
Provided is a method capable of producing a retardation film being excellent in axial accuracy, showing small changes in retardation and dimensions at the time of its heating, and having a slow axis in an oblique direction with high production efficiency. The production method for a retardation film of the present invention includes: holding left and right end portions of a film with left and right variable pitch-type clips configured to have clip pitches changing in a longitudinal direction, respectively; preheating the film; causing the clip pitches of the left and right clips to each independently change to obliquely stretch the film; reducing the clip pitches of the left and right clips to shrink the film in the longitudinal direction; and releasing the film from being held with the clips.