Abstract:
A method and apparatus for generating a control signal which corresponds to movement of an object in contact with a first surface are described. The apparatus includes a platen having the first surface. The platen is characterized by a critical angle beyond which light incident upon the first surface is not transmitted. A source of electromagnetic radiation emits electromagnetic radiation through the platen thereby illuminating the object. A detector having a plurality of sectors receives a portion of the electromagnetic radiation diffused by the object and transmitted through the platen beyond the critical angle. The sectors of the detector accumulate charge in response to the incident electromagnetic radiation. Conversion circuitry then converts the charge accumulated in the detector to the control signal, which in a specific embodiment is for controlling the movement of a pointer on a display.
Abstract:
A solid state image sensor CCD array (10a) has a two block, full-frame, parallel-register structure. The two blocks of the array, each comprised of photosensitive radiation sensors or pixels (20), feed into a single centrally disposed serial read-out register (10b) so as to form one unified photosensitive domain. The read-out register is photosensitive except for two associated narrow clock buses (H1, H2) that are spaced apart so as to only block a minimum of input radiation in any one pixel (22) of the read-out register. Each stage of the read-out register can act as a pixel that is approximately square and that is approximately the same size as the pixels of the two full-frame blocks. In operation, the centrally disposed read-out register can be stationary for a significant first portion of a total frame time (integration period), and then in a latter part of the frame time it can be read out one or more times to provide exposure update information for all of the pixels of the array. Typical examples of applications include advanced histogram-based, or other types of, X-ray exposure optimization. The array avoids the use of an "amplifier corner" that is characteristic of most if not all area image sensors. As such, all four corners of the array can be shaped to suit a particular application. One application of particular interest is for intra-oral dental X-ray imager and system.
Abstract:
An adjustable apodized lens aperture is described which is constructed using photochromic material. As the excitation energy increases, the aperture constricts so as reduce the amount of light through the aperture. As the excitation energy decreases, the aperture dilates so as increase the amount of light through the aperture.
Abstract:
An adjustable apodized lens aperture is described which is constructed using photochromic material. As the excitation energy increases, the aperture constricts so as reduce the amount of light through the aperture. As the excitation energy decreases, the aperture dilates so as increase the amount of light through the aperture.
Abstract:
Methods and apparatus are described for retrieving information from a storage medium. A first portion of the surface of the storage medium is exposed to stimulating light which diffuses in the storage medium under a second portion of the surface adjacent the first portion. The second portion of the surface is shielded from exposure to the stimulating light. Stimulated light corresponding to the information is received with at least one detector positioned to receive the stimulated light via the second portion of the surface of the storage medium. The stimulated light is released from the storage medium in response to the stimulating light diffused under the second portion of the surface.
Abstract:
Methods and apparatus are described for retrieving information from a storage medium. A first portion of the surface of the storage medium is exposed to stimulating light which diffuses in the storage medium under a second portion of the surface adjacent the first portion. The second portion of the surface is shielded from exposure to the stimulating light. Stimulated light corresponding to the information is received with at least one detector positioned to receive the stimulated light via the second portion of the surface of the storage medium. The stimulated light is released from the storage medium in response to the stimulating light diffused under the second portion of the surface.
Abstract:
A method and apparatus for generating a control signal which corresponds to movement of an object in contact with a first surface are described. The apparatus includes a platen having the first surface. The platen is characterized by a critical angle beyond which light incident upon the first surface is not transmitted. A source of electromagnetic radiation emits electromagnetic radiation through the platen thereby illuminating the object. A detector having a plurality of sectors receives a portion of the electromagnetic radiation diffused by the object and transmitted through the platen beyond the critical angle. The sectors of the detector accumulate charge in response to the incident electromagnetic radiation. Conversion circuitry then converts the charge accumulated in the detector to the control signal, which in a specific embodiment is for controlling the movement of a pointer on a display.
Abstract:
An input device comprising an overlay for a display screen comprising an optically conductive material is described. The overlay has a central region for transmitting first electromagnetic radiation corresponding to an object in contact with the overlay at a first location, and a light conduit along the edge of the central region for receiving and transmitting the first electromagnetic radiation. The light conduit is configured to inhibit transmission of the first electromagnetic radiation back into the central region of the overlay. At least one detector is coupled to the light conduit for receiving the first electromagnetic radiation and generating a signal indicative thereof. Location circuitry receives the signal and generates location data indicative of the first location.
Abstract:
Simple, inexpensive and durable multi-element lens systems are provided. These lens systems may be optically coupled to digital image-capturing devices, such as those used in digital cameras. Some lens systems of the present invention include a glass microsphere bonded to a planar surface of a glass hemisphere. In preferred lens systems, the thickness of the glass hemisphere is selected to form an image plane for transmitted light that is tangent to the surface of the microsphere. Accordingly, in digital cameras fabricated with such lens systems, the glass microsphere can be attached directly to a digital image-capturing device. These preferred lens systems require no focusing adjustment and are suitable for applications to requiring a wide field of view. In some embodiments, the glass microsphere is bonded to the glass hemisphere using a light-absorbing material in order to create an apodized pupil. Some such embodiments are fabricated with a light-absorbing material with an absorption coefficient that varies according to the wavelength of transmitted light.
Abstract:
A method and apparatus for generating a control signal which corresponds to movement of an object in contact with a first surface are described. The apparatus includes a platen having the first surface. The platen is characterized by a critical angle beyond which light incident upon the first surface is not transmitted. A source of electromagnetic radiation emits electromagnetic radiation through the platen thereby illuminating the object. A detector having a plurality of sectors receives a portion of the electromagnetic radiation diffused by the object and transmitted through the platen beyond the critical angle. The sectors of the detector accumulate charge in response to the incident electromagnetic radiation. Conversion circuitry then converts the charge accumulated in the detector to the control signal, which in a specific embodiment is for controlling the movement of a pointer on a display.