Abstract:
An optical measurement device for measuring strain related to deformation of a deformable surface of a component. The optical measurement device includes a fiber tension structure including opposing longitudinal end sections attached to the deformable surface. An optical fiber is tensioned by the fiber tension structure and includes a section defining a Bragg grating. The fiber tension structure includes a displaceable portion for forming a structural break between the longitudinal end sections where the fiber tension structure separates to form a gap between the first and second longitudinal end sections. The longitudinal end sections are movable independently of each other after formation of the structural break in the fiber tensioning structure.
Abstract:
Aspects of the invention are directed to a visual-based system and method for non-destructively evaluating an uncoated turbine engine component. Aspects of the invention are well suited for high speed, high temperature components. Radiant energy emitted from an uncoated turbine engine component can be captured remotely and converted into a useful form, such as a high resolution image of the component. A plurality of images of the component can be captured over time and evaluated to identify failure modes. The system can also measure and map the temperature and/or radiance of the component. The system can facilitate the non-destructive evaluation of uncoated turbine components during engine operation without disassembly of the engine, thereby providing significant time and cost savings. Further, the system presents data to a user with sufficient context that allows an engine operator can evaluate the information with an increased degree of confidence and certainty.
Abstract:
Apparatus and method for monitoring vibration levels in rotatable machinery (52). In one embodiment, a system (50) includes a source (66) for generating coherent radiation (70) and a first partially transmissive, partially reflective device (90) positioned to receive radiation (70) from the source (66) and transmit a part of the radiation there through. A second partially transmissive, partially reflective device (100) is mounted to the machinery (52), positioned to reflect a first signal (72) and transmit radiation (70) transmitted by the first device (90). A third device 104) is mounted to the machinery (52) and positioned to reflect radiation transmitted through the second device to provide a second signal (78). Circuitry (82, 86) is configured to generate an electrical signal based on a combination of the first and second signals (72, 78), and processing circuitry (114) provides a value indicative of vibration amplitude occurring in the machinery (52) based on the combination of the first and second signals. An embodiment of an associated method includes providing a first radiation signal (70) of a first frequency, deriving second and third radiation signals (78A, 78B) each having a time-varying Doppler shifting frequency relative to the first signal, and providing a value indicative of vibration amplitude occurring in the machinery (52) based on a combination of the second and third signals.
Abstract:
An optical inspection system is for visually inspecting the blades of a turbine at turning gear operation. The inspection system includes an imager for capturing images of the blades, an optical passage coupled to the imager and structured to provide maximum viewing area of the blades through an inspection port in the turbine and an illuminating assembly adapted to illuminate the blades while the imager captures images thereof. A method wherein the captured blade images are inspected for blade defects, is also disclosed.
Abstract:
A system (10) for imaging a combustion turbine engine airfoil includes a camera (12) and a positioner (24). The positioner may be controlled to dispose the camera within an inner turbine casing of the engine at a first position for acquiring a first image. The camera may then be moved to a second position for acquiring a second image. A storage device (30) stores the first and second images, and a processor (32) accesses the storage device to generate a composite image from the first and second images. For use when the airfoil is rotating, the system may also include a sensor (40) for generating a position signal (41) responsive to a detected angular position of an airfoil. The system may further include a trigger device (42), responsive to the position signal, for triggering the camera to acquire an image when the airfoil is proximate the camera.
Abstract:
The present invention provides a configuration where all optical parts of a monitoring system are contained within a seal and within the generator itself. Non-optical preamplifier functions may also be placed within the seal. In this configuration there is an electrical rather than optical feed-through at the generator wall, which is hermetically sealed, unlike a fiber optic feed-through. The fiber optic light source and detector for each sensor is located in the seal on the generator side of the hermetic electrical feed-through. Electrical power and the sensor's converted electrical vibration signals pass through the electrical feed-through to preamplifier circuitry on the outside of the seal where direct electrical connection is then made to a main chassis unit.
Abstract:
The present invention provides a flange-mounted condition monitor (30) that can be mounted to an access flange (21) on an access opening (20) on the housing (13) of a generator (10). The condition monitor (30) forms an integral part of the generator (10) and eliminates the need for complex systems of pipes and valves for transferring hydrogen samples from the generator (10) to the condition monitor (30). The flange-mounted condition monitor (30) provides greater sensitivity to overheat conditions, significantly reducing the risk of dangerous hydrogen leaks and eliminating costs associated with installing and maintaining a remote condition monitor and also reducing or eliminating the false alarms associated with water that collects in the piping of a remote condition monitor.
Abstract:
A passive blade vibration monitor sensor for determining an arrival time of a blade of a combustion turbine during operation, the sensor includes an optical lens which receives infrared radiation generated by the blade of the turbine and generates a sensor signal from the received infrared radiation, the sensor signal indicating an arrival time of the blade of the combustion turbine. Target material having an emissivity lower than the emissivity of the blade may be placed on the blade to enhance sensor sensitivity especially in shrouded blade environments.
Abstract:
A method for determining a beat frequency in a vibration sensing system attached to an electrical generator comprises the steps of (a) generating a vibration signal indicative of a vibrational frequency and amplitude of the generator; and (b) obtaining a beat frequency from the vibration signal by storing and processing time interval data representing the time intervals between zero crossings of the vibration signal. A generator 10, optical vibration sensor 12, and computer 14 constitute the vibration sensing system 16. The computer is programmed to analyze the time interval data to obtain the beat frequency.
Abstract:
A brush assembly for providing contact between a grounding brush and a rotating shaft, in which the noncontact time associated with brush bounce is reduced. A brush is provided which is fixed to a pivotable arm, with a bias force applied to the arm, such that when the brush is bounced from a shaft as a result of vibration or shaft wobbling, the bias force will reestablish contact between the brush and shaft. Rolling contact between a negator spring and the arm is also provided for reducing friction associated with contact between the spring and pivotable arm. Due to the reduced friction provided by the rolling contact, and more significantly by the pivotal mounting of the arm to which the brush is fixed, the response of the assembly in reestablishing contact with the shaft is greatly improved.