Abstract:
Embodiments include a portable rechargeable battery pack, system, and external adapter that allow the portable rechargeable battery pack to both power a host device though a set of host contacts and provide power through a set of charging contacts. The portable rechargeable battery pack includes a charge protection circuit that prevents an excessive discharge current through the charging contacts and allows high charge current when charging the portable rechargeable battery pack. A discharge circuit allows a low level discharge current through the charging contacts to provide power to other devices.
Abstract:
A method for charging a battery includes detecting, with an electronic processor, a presence of the battery coupled to a charging interface. The method includes receiving, with the electronic processor, a command, the command including a charge mode. The method includes, in response to receiving the command, controlling a charging circuit coupled to the charging interface to charge the battery to a predetermined level based on the charge mode. The method includes, when the battery reaches the predetermined charge level, sending a battery control command, based on the charge mode, to control an active limiting circuit of the battery via a single wire data line coupled to the charging interface.
Abstract:
An internal charging system controls charging of a battery used to power an electronic device when an external power source is connected to the device. The internal charging system can charge a battery that has a higher operating voltage than the voltage provided by the external power source. While charging the battery from the external power source, an internal charge controller can operate and inhibit functions of the device to indicate to user that a charging operation is commencing, and to prevent operation of the device when the battery voltage is too low to support such operation.
Abstract:
A charging apparatus (102), system (100) and method (500) are provided for charging and/or powering a wearable electronic device, such as electronic eyeglasses. The charging apparatus comprises an acoustic horn, a piezoelectric transducer, and charger circuitry for converting ultrasonic waves received at the horn into a charging signal. The charging signal is used for charging and/or powering the wearable electronic device while the device is being worn.
Abstract:
A method and apparatus for determining whether to enable a functionality of a battery powered device upon connection to a battery is embodied by providing at least one voltage threshold in a memory of the battery that corresponds to a usable operating range limit of the battery and that is accessible by the battery powered device. Upon connection to the battery, the battery powered device acquires the voltage threshold or thresholds from the battery and programs itself with the threshold or thresholds. The battery powered device then compares a voltage of the battery to the threshold or threshold to determine whether the enable the functionality.
Abstract:
Embodiments include a portable rechargeable battery pack, system, and external adapter that allow the portable rechargeable battery pack to both power a host device though a set of host contacts and provide power through a set of charging contacts. The portable rechargeable battery pack includes a charge protection circuit that prevents an excessive discharge current through the charging contacts and allows high charge current when charging the portable rechargeable battery pack. A discharge circuit allows a low level discharge current through the charging contacts to provide power to other devices.
Abstract:
A battery module includes a first load terminal, a second load terminal, a load enable terminal, and a battery having a first battery terminal coupled to the first load terminal. A first protection circuit includes a first isolation device coupled between a second battery terminal of the battery and the second load terminal of the battery module. The first protection circuit further includes a first sensing circuit configured to measure a battery parameter and control the first isolation device based on the battery parameter. A driver circuit is coupled between the first battery terminal and the first protection circuit. The driver circuit is configured to control power to the first protection circuit based on a load enable signal asserted at the load enable terminal. A bypass circuit is coupled between the second battery terminal and the second load terminal.
Abstract:
A method for charging a battery includes detecting, with an electronic processor, a presence of the battery coupled to a charging interface. The method includes receiving, with the electronic processor, a command, the command including a charge mode. The method includes, in response to receiving the command, controlling a charging circuit coupled to the charging interface to charge the battery to a predetermined level based on the charge mode. The method includes, when the battery reaches the predetermined charge level, sending a battery control command, based on the charge mode, to control an active limiting circuit of the battery via a single wire data line coupled to the charging interface.
Abstract:
A method and apparatus for detecting and responding to cell swell in one or more cells of a battery includes receiving one or more indications of cell swell from switching circuitry associated with a cell, determining if the battery is fit for purpose based on the one or more indications, and performing an action responsive to the one or more indications and whether the battery is fit for purpose.
Abstract:
Embodiments include a modular battery charger having a main charging source and is configured to include at least one additional charging source that can be an auxiliary charging source or an external charging source. The additional charging sources can be added as modules to augment the total charging current that can be provided to a rechargeable battery. The modular battery charger can selectively enable or disable the additional charging sources while controlling the output current of the main charging source to adjust the charging current provided to a rechargeable battery.