Abstract:
A multiunit charger including a base, a plurality of charging pockets coupled to the base, an accessory organization bar coupled to the base, and a charging circuit coupled to the base. Each one of the plurality of charging pockets is for charging a respective battery powered portable communication device. The accessory organization bar provides retention for a battery powered accessory device. The charging circuit charges the respective battery powered portable communication device. Also disclosed is a battery charging system having the multiunit charger and the accessory device. The accessory device may include a clip coupling the accessory device to the accessory organization bar. The charging circuit may include a transmitter antenna, and the accessory device-may include a receiver antenna in wireless charging communication with the transmitter antenna.
Abstract:
A method and apparatus for a battery protection circuit. One embodiment provides a method for protecting a battery including receiving, with a comparator, a first voltage, the first voltage including a switch voltage across a current limiting switch provided on a current path of a battery and coupled to a current limiting control circuit to limit current output by the battery. The method also includes receiving, with the comparator, a reference voltage and comparing, with the comparator, the first voltage and the reference voltage. The method further includes controlling, with the comparator, a control switch to open when the first voltage exceeds the reference voltage.
Abstract:
A charging accessory (104) is provided. The charging accessory (104) comprises a mechanical attachment device, such as a clip (110), and a receive coil (112) integrated within the clip, the receive coil for receiving a wireless charging signal (118). A wearable lanyard (126) is coupled to the clip (110) for transferring power and charging signals. The charging accessory (104) can be worn and operated within a charging system (100) to power and charge a wearable electronic device (102).
Abstract:
Disclosed herein are methods and systems for contactless battery discharging. One embodiment takes the form of a contactless power-transfer system that includes a wireless-communication interface, a controller connected to the wireless-communication interface, a magnetic-resonance circuit, a power-conditioning circuit connected to the magnetic-resonance circuit, and a load element connected to the power-conditioning circuit. The controller is configured to determine that a smart-battery system is in a discharge-needed state and responsively transmit, via the wireless-communication interface, a battery-discharge command instructing the smart-battery system to generate an oscillating magnetic field. The magnetic-resonance circuit is configured to couple with the generated oscillating magnetic field and responsively output a corresponding power signal. The power-conditioning circuit is configured to receive the power signal from the magnetic-resonance circuit, rectify the received power signal, and output the rectified power signal. The load element is configured to receive the rectified power signal from the power-conditioning circuit.
Abstract:
A method and apparatus for a battery protection circuit. One embodiment provides a method for protecting a battery including receiving, with a comparator, a first voltage, the first voltage including a switch voltage across a current limiting switch provided on a current path of a battery and coupled to a current limiting control circuit to limit current output by the battery. The method also includes receiving, with the comparator, a reference voltage and comparing, with the comparator, the first voltage and the reference voltage. The method further includes controlling, with the comparator, a control switch to open when the first voltage exceeds the reference voltage.
Abstract:
A method and apparatus for determining the condition of a rechargeable battery determines a dynamic impedance of the battery while discharging the battery, and determines a battery condition category based on the dynamic impedance. The battery can be discharged in a manner that recovers the stored energy being discharged from the battery.
Abstract:
Embodiments include a modular battery charger having a main charging source and is configured to include at least one additional charging source that can be an auxiliary charging source or an external charging source. The additional charging sources can be added as modules to augment the total charging current that can be provided to a rechargeable battery. The modular battery charger can selectively enable or disable the additional charging sources while controlling the output current of the main charging source to adjust the charging current provided to a rechargeable battery.
Abstract:
A method and apparatus for determining the condition of a rechargeable battery determines a dynamic impedance of the battery while discharging the battery, and determines a battery condition category based on the dynamic impedance. The battery can be discharged in a manner that recovers the stored energy being discharged from the battery.
Abstract:
Body-worn wireless electronic devices may be powered by one or more wireless power sources. These wireless power sources may comprise body-worn wireless power sources and non body-worn wireless power sources. The sources are detected by the electronic device and are either prioritized based on being body-worn or non body-worn. The selection of sources for powering the electronic device(s) may alternatively be made based on predetermined parameters associated with the power sources. Optimal power transfer is thus obtained for the electronic devices while being worn.
Abstract:
A multiunit charger including a base, a plurality of charging pockets coupled to the base, an accessory organization bar coupled to the base, and a charging circuit coupled to the base. Each one of the plurality of charging pockets is for charging a respective battery powered portable communication device. The accessory organization bar provides retention for a battery powered accessory device. The charging circuit charges the respective battery powered portable communication device. Also disclosed is a battery charging system having the multiunit charger and the accessory device. The accessory device may include a clip coupling the accessory device to the accessory organization bar. The charging circuit may include a transmitter antenna, and the accessory device-may include a receiver antenna in wireless charging communication with the transmitter antenna.