Abstract:
According to an embodiment, a photodetector includes a plurality of photoelectric transducers, a plurality of resistors, and a plurality of resetting sections. Each of the photoelectric transducers is configured to output a detection signal resulting from, conversion of received light into an electric charge. Each of the resistors is connected in series with an output end of a corresponding photoelectric transducer at one end of the resistor. Each of the resetting sections is connected in parallel with a corresponding resistor and configured to bring the output end of the corresponding photoelectric transducer to a reset level in response to the detection signal.
Abstract:
A radiation detection apparatus according to an embodiment includes: a scintillator; a photon detection device array including a plurality of cells each being a photon detection device with an avalanche photodiode configured to detect visible radiation photons emitted from the scintillator and a resistor disposed along a part of a periphery of an active region of the avalanche photodiode; and a reflector configured to reflect a visible radiation photon and disposed in a region that does not include the active regions and the resistors of the cells, on a face including the active regions.
Abstract:
A radiation detector according to an embodiment includes: a semiconductor substrate; a light detecting unit provided on a side of a first surface of the semiconductor substrate; a first insulating film provided covering the light detecting unit; a second insulating film covering the first insulating film; a scintillator provided on the second insulating film; an interconnection provided between the first and second insulating films, and connected to the light detecting unit; a first electrode connected to the interconnection through a bottom portion of the first opening; a second electrode provided on a region in the second surface of the semiconductor substrate, the region opposing at least a part of the light detecting unit; a second opening provided in a region surrounding the first electrode and not surrounding the second electrode; and an insulating resin layer covering the first and second electrodes and the first and second openings.
Abstract:
According to an embodiment, a photodetector includes a photo detection layer, light conversion members, and a first member. The photo detection layer includes, on a light incident surface, plural pixel regions and a surrounding region. The pixel region holds a photo detection element to detect the light. The surrounding region is a region other than the pixel regions on the light incident surface. The light conversion members are arranged to oppose the pixel regions in the photo detection layer and convert radiation to the light. Each light conversion member includes a bottom surface opposing the pixel region in the photo detection layer, a top surface opposing the bottom surface, and a lateral surface connecting the bottom and top surfaces. The first member is disposed on a portion of the surrounding region on the light incident surface and covers a portion of the lateral surface of the light conversion member.
Abstract:
According to an embodiment, a radiation detection device includes one or more processors. The one or more processors are configured to: acquire an output waveform, from a detector configured to output the output waveform according to radiation; and identify a type of radiation incident on the detector, based on a first integrated value of the output waveform in a first integration period and a second integrated value of the output waveform in a second integration period.
Abstract:
A detection apparatus according to an embodiment includes first detectors, a first electrode, second detectors and a second electrode. The first detectors detect a photon. The first electrode is electrically connected to each of the first detectors. The second detectors detect a photon. The second electrode is electrically connected to each of the second detectors. The number of first detectors is less than the number of second detectors.
Abstract:
An integrator according to an embodiment includes first and second nodes, first to fifth switches, first and second main integration capacitors, and a first subsidiary integration capacitor. The first (second, third, fourth, fifth) switch has one end connected to a first (third, first, fourth, first) node and the other end connected to a third (second, fourth, second, fifth) node. The first main integration capacitor has one end connected to the third node and the other end connected to a standard voltage line. The second main integration capacitor has one end connected to the fourth node and the other end connected to the standard voltage line. The first subsidiary integration capacitor that has one end connected to the fifth node and the other end connected to the standard voltage line.
Abstract:
According to an embodiment, an apparatus includes a reference calculator, a peak calculator, a coefficient calculator, and a calibrator. The reference calculator is configured to calculate, as a first value, a most frequent electrical signal level from a first set of electrical signal levels output from the respective pixels of a detector for radiation. The peak calculator is configured to calculate, as a second value, a peak level of radiation energy of a characteristic X-ray, based on a relation between energy and intensity of radiation obtained from the first set. The coefficient calculator is configured to calculate a coefficient by dividing a difference between the first and second values by the peak level. The calibrator is configured to multiply an electrical signal level of each pixel by the coefficient and add the first value to the multiplication to calibrate a relation between detection output and incident radiation of the detector.
Abstract:
According to an embodiment, a radiation measuring apparatus includes a detector, comparators, a threshold controller, counters, and a generator. The detector includes plural detecting elements each configured to convert energy of incident radiation into a first electrical signal. The comparators correspond to the respective detecting elements, each comparator being configured to output a second electrical signal when a level of the corresponding first electrical signal is not less than a threshold. The threshold controller is configured to supply a first value as the threshold to the respective comparators at a first time, and supply a second value as the threshold to the respective comparators at a second time. The counters correspond to the respective comparators, each counter being configured to count the corresponding second electrical signal. The generator is configured to generate a pulse height frequency distribution of the radiation by using counts of the counters.
Abstract:
According to an embodiment, an apparatus includes a first detector, a second detector, and a controller. The first detector is configured to detect first radiation at a first frequency within a first time by at least a first radiation detecting element and a second radiation detecting element that are positioned near to each other, and output a first signal. The second detector is configured to detect second radiation at a second frequency less than the first frequency within a second time by at least the first radiation detecting element and the second radiation detecting element, and output a second signal. The controller is configured to generate a third signal representing a difference between the first signal and the second signal, and calculate energy using the third signal.