Abstract:
A duty cycle correction circuit includes a first duty cycle detecting circuit configured to detect a duty cycle of a clock signal with a first resolution; a reference clock generating circuit configured to generate a reference clock signal by adjusting a phase of the clock signal; a second duty cycle detecting circuit configured to detect a duty cycle of the clock signal with a second resolution according to the reference clock signal and the clock signal, the second resolution being finer than the first resolution; a first duty cycle adjusting circuit configured to adjust the duty cycle of the clock signal according to one or more first control signals output from the first duty cycle detecting circuit; and a second duty cycle adjusting circuit configured to adjust the duty cycle of the clock signal according to one or more second control signals output from the second duty cycle detecting circuit.
Abstract:
A display device includes a first touch panel on which a first touch sensing unit including a plurality of coils is disposed, a second touch panel on which a second touch sensing unit including a plurality of sensing nodes coupled to the plurality of coils in a coupling manner with a one-to-one correspondence, and a display panel disposed between the first and second touch panels and displays an image, and the plurality of sensing nodes is formed in a divided structure grouped into first and second node groups based on a touch event detected by the first touch sensing unit.
Abstract:
A Successive Approximated Register Analog-to-Digital Converter (“SARADC”) is provided that includes: a bootstrapping unit that receives and samples analog signals; and an Analog-to-Digital Conversion Unit (“ADCU”) that converts the analog signals into digital signals and outputs the digital signals. ADCU has a resolution increasing in response to an intentionally injected offset voltage. In this case, ADCU includes Capacitor Arrays (“CAs”) having: a differential structure each including reference voltage application capacitors having different capacitances and an Offset Voltage Injection Capacitor (“OVIC”); a delay cell that operates CAs in an asynchronous mode; Reference Transfer Switch Units (“RTSUs”) that apply a reference voltage to CAs; a comparator that compares output voltages of CAs; and Successive Approximated Register Logics (“SARLs”). SARLs control operations of RTSUs in response to an output signal of the comparator and perform control so that a reference voltage is applied to OVICs when the output of the comparator is abnormal.
Abstract:
According to an exemplary embodiment, a capacitively coupled continuous-time delta-sigma modulator includes an instrumentation amplifier amplifying an input voltage to an output voltage of a predetermined magnitude, a delta-sigma modulator outputting a bit signal quantized depending on a sampling frequency based on the output voltage and to convert the bit signal into a digital-to-analog conversion voltage, and a ripple reduction loop unit generating a demodulation voltage, in which a ripple is removed from the output voltage, depending on an RRL operating frequency to feed the demodulation voltage back to the instrumentation amplifier. The RRL operating frequency is equal to the sampling frequency.
Abstract:
A system includes a transmitter including: an aligner configured to align the phases of an input clock signal and data signal; and a transmission circuit configured to generate a transmission signal of which the phase and amplitude are controlled according to the aligned clock signal and the aligned data signal. The system may also include a receiver including: a clock extraction circuit configured to extract a temporary clock signal from the transmission signal; a data extraction circuit configured to extract a temporary data signal from the transmission signal; a clock delay selector configured to generate the clock signal by delaying the temporary clock signal according to a value of the temporary data signal; and a data recovery circuit configured to sample the temporary data signal according to the clock signal outputted from the clock delay selector and output a data signal.