Abstract:
The present specification provides a carbon fiber reinforced composite structure comprising: a plurality of carbon fiber reinforced sheets, which are laminated; and a stitch member penetrating one or more carbon fiber reinforced sheets, in which the carbon fiber reinforced sheet includes a plurality of reinforcing carbon fibers arranged in one direction. The carbon fiber reinforced composite structure shows excellent thermal conductivity in a thickness direction.
Abstract:
Disclosed is a liquid crystalline epoxy compound wherein an epoxy group is positioned at a side chain of the longer direction of a mesogen group and each of the mesogen group and the epoxy group is connected to the center of the molecular structure through a flexible linkage. Since the liquid crystalline epoxy compound includes an epoxy group positioned at a side chain of the longer direction of a mesogen group and each of the mesogen group and the epoxy group is connected to the center of the molecular structure through a flexible linkage, the interaction between the mesogens in a cured resin product occurs significantly without weakening even after curing, thereby improving the heat conductivity of the resin compound through the active heat transfer between the mesogens.
Abstract:
Provided are a composition for swelling pretreatment of a cured thermosetting resin material before decomposition, including a surfactant and an acidic material, and a method for swelling pretreatment of a cured thermosetting resin material before decomposition by using the same. When carrying out swelling pretreatment of a cured thermosetting resin material before decomposition by using the composition, it is possible to accelerate infiltration of the acidic material into the cured thermosetting resin material and swelling of the cured thermosetting resin material by virtue of the surfactant, and thus to increase the decomposition reactive surface area. Therefore, it is possible to increase reaction efficiency during the subsequent decomposition process, and to increase the decomposition ratio during the same period of time.
Abstract:
Provided are a transparent heat-insulating material including a transparent heat-insulating resin layer including polymer capsules and an optical resin, and a method for preparing the same. The transparent heat-insulating material may reduce the transmission of radiative heat of solar radiation energy entering from the exterior, and prevent discharge or loss of heat when indoor heating, while showing high transparency as well. In addition, the transparent heat-insulating material may allow easy control of the size of capsules contained in a transparent heat-insulating film, and may be obtained through a simple and easy process. Further, it is possible to control the light transmittability and heat-insulating property of the transparent heat-insulating material with ease.