Abstract:
Light Emitting Devices (LEDs) are fabricated on a wafer substrate with one or more thick metal layers that provide structural support to each LED. The streets, or lanes, between individual LEDs do not include this metal, and the wafer can be easily sliced/diced into singulated self-supporting LEDs. Because these devices are self-supporting, a separate support submount is not required. Before singulation, further processes may be applied at the wafer-level; after singulation, these self-supporting LEDs may be picked and placed upon an intermediate substrate for further processing as required. In an embodiment of this invention, protective optical domes are formed over the light emitting devices at the wafer-level or while the light emitting devices are situated on the intermediate substrate.
Abstract:
Semiconductor LED layers are epitaxially gown on a patterned surface of a sapphire substrate (10). The patterned surface improves light extraction. The LED layers include a p-type layer and an n-type layer. The LED layers are etched to expose the n-type layer. One or more first metal layers are patterned to electrically contact the p-type layer and the n-type layer to form a p-metal contact (32) and an n-metal contact (33). A dielectric polymer stress-buffer layer (36) is spin-coated over the first metal layers to form a substantially planar surface over the first metal layers. The stress-buffer layer has openings exposing the p-metal contact and the n-metal contact. Metal solder pads (44, 45) are formed over the stress-buffer layer and electrically contact the p-metal contact and the n-metal contact through the openings in the stress-buffer layer. The stress-buffer layer acts as a buffer to accommodate differences in CTEs of the solder pads and underlying layers.
Abstract:
Thick metal pillars are formed upon light emitting dies while the dies are still on their supporting wafer. A molding compound is applied to fill the space between the pillars on each die, and contact pads are formed atop the pillars. The metal pillars provide electrical contact between the contact pads and the electrical contacts of each light emitting die. The metal pillars maybe formed upon an upper metal layer of each die, and this upper metal layer maybe patterned to provide connections to individual elements within the die.