Abstract:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server. The system further includes circuitry configured to establish a communication link between the host system and the remote application server. The circuitry is configured periodically transmit keep-alive messages to the remote application server after the host system transitions to and remains in a low-power state. The keep-alive messages are configured to maintain connectivity and presence of the AOAC application with the remote application server while the host system is in the low-power state.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed that improve sleep state demotion with a hardware power monitor. An example apparatus includes memory, and processor circuitry to perform at least one of the operations to instantiate: detector circuitry to detect power output data of the computing device via a hardware power monitor, power analyzer circuitry to determine the power output data for sleep states of the computing device based on multiple wake intervals, identifier circuitry to identify crossover thresholds at ones of the multiple wake intervals, and controller circuitry to limit the computing device to the crossover thresholds at ones of the multiple wake intervals.
Abstract:
In one embodiment, a processor includes: a plurality of cores to execute instructions; a power controller to control power consumption of the plurality of cores, the power controller to receive network traffic metadata from a classifier and control the power consumption of at least one of the plurality of cores based at least in part on the network traffic metadata; and a hardware feedback circuit coupled to the plurality of cores, the hardware feedback circuit to determine hardware feedback information comprising an energy efficiency capability and a performance capability of at least some of the plurality of cores based at least in part on the network traffic metadata. Other embodiments are described and claimed.
Abstract:
Examples disclosed herein include a mobile computing device to determine network condition information associated with a route segment. The route segment may be one of a number of route segments defining at least one route from a starting location to a destination. The mobile computing device may determine a route from the starting location to the destination based on the network condition information. The mobile computing device may upload the network condition information to a crowdsourcing server. A mobile computing device may predict a future location of the device based on device context, determine a safety level for the predicted location, and notify the user if the safety level is below a threshold safety level. The device context may include location, time of day, and other data. The safety level may be determined based on predefined crime data.
Abstract:
Example smart panel display apparatus and related methods are disclosed herein. An example apparatus to control a display of an electronic device includes a user presence detector to determine a presence of a user relative to the device based on image data generated by an image sensor of the device. The example apparatus includes a gaze detector to determine a direction of a gaze of the user relative to the image sensor based on the image data. The example apparatus includes a backlight manager to selectively adjust a display brightness based on the presence of the user and the direction of the gaze of the user.
Abstract:
Technologies for providing information to a user while traveling include a mobile computing device to determine network condition information associated with a route segment. The route segment may be one of a number of route segments defining at least one route from a starting location to a destination. The mobile computing device may determine a route from the starting location to the destination based on the network condition information. The mobile computing device may upload the network condition information to a crowdsourcing server. A mobile computing device may predict a future location of the device based on device context, determine a safety level for the predicted location, and notify the user if the safety level is below a threshold safety level. The device context may include location, time of day, and other data. The safety level may be determined based on predefined crime data. Other embodiments are described and claimed.
Abstract:
A method is described that comprises executing a service selection method on an off load processor of a computing system to select an available network service for handling traffic sent to/from a handheld device. The execution of the service selection method is performed while a main CPU of said computing system is in a low power state.
Abstract:
An apparatus of embodiments, as described herein, includes one or more processors to track data associated with movement of a computing device accessible to a user, and evaluate the data and compare a latency with latency thresholds, where the data indicates the latency and the latency thresholds associated with a frame. The one or more processors are further to maintain a current video encoding rate, if the latency is lower than a first latency threshold and greater than a second latency threshold. The current video encoding rate is decreased if the latency is equal to or greater than the first latency threshold, where the current video encoding rate is increased if the latency is lower than the second latency threshold. The one or more processors are further to present the frame at the computing device including one or more of a wearable device and a mobile device.
Abstract:
Methods and apparatus for in-field thermal calibration are disclosed. A disclosed example apparatus includes instructions, memory in the apparatus, and processor circuitry. The processor circuitry is to execute the instructions to determine that a system on chip (SOC) package is deployed, the SOC package deployed with a default first thermal model, in response to the determination that the SOC package is deployed, monitor at least one temperature of the SOC package from a sensor and power usage of the SOC package, calibrate a second thermal model based on the at least one temperature and the power usage, and publish the calibrated second thermal model for control of the SOC package.
Abstract:
Methods, systems, and apparatus to reconfigure a computer are disclosed. An example electronic device includes at least one memory, instructions in the electronic device, and processor circuitry to execute instructions to analyze data corresponding to a first configuration of the electronic device to detect a change associated with the electronic device, the first configuration corresponding to a respective first user profile, determine a second configuration of the electronic device based on the detected change, and adjust a configuration of the electronic device from the first configuration to the second configuration.