Abstract:
Methods, apparatuses, and computer-readable medium are described for doing fine timing measurements for one or more stations. A trigger frame is encoded for stations. Uplink null data packets are received. A time of arrival for the UP NDP and a time of departure for a downlink null data packet are determined. The time of arrival and time of departure are encoded into a data packet, such as a downlink null data packet announcement. A wireless device is configured to transmit the data packet to a station.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Multi User (MU) Fine Timing Measurement (FTM). For example, a wireless station may be configured to transmit a trigger frame including a resource allocation of a plurality of resource slots to a plurality of wireless stations; to process a plurality of Non-Data Packet (NDP) transmissions from the plurality of wireless stations according to the resource allocation; to transmit an NDP; and to transmit a MU FTM message including timing information corresponding to the NDP and timing information corresponding to the plurality of NDP transmissions from the plurality of wireless stations.
Abstract:
Embodiments for performing access point position determination using crowd sourcing are generally described herein. In some embodiments, a range report request is received, by at least one mobile device, from a network entity for determining a position of a plurality of access points (APs). The at least one mobile device performs range measurements on each of the plurality of APs at different locations. A range report associated with the range measurements performed on each of the plurality of APs is sent to the network entity by the at least one mobile device.
Abstract:
Improved wireless network location techniques are described. In one embodiment, for example, an apparatus may comprise circuitry and a communications management module for execution on the circuitry to send a timing announcement element comprising a sounding preamble count parameter indicating a number of sounding preambles, send a null data element comprising a number of sounding preambles equal to the sounding preamble count parameter, receive timing reply information comprising the number of sounding preambles equal to the sounding preamble count parameter, and determine a time of flight based on the timing reply information. Other embodiments are described and claimed.
Abstract:
The disclosure relates to a method, apparatus and system for optimized indoor position estimation. Specifically, the disclosure relates to indoor position estimation by considering the likelihood that an access point may be an outlier. In one embodiment, the disclosure relates to a system to determine a device location. The system includes one or more antennas; a radio in communication with the at least one or more antennas; a processor to communicate with radio, the processor configured to: measure a distance from the device to a plurality of access points (APs); define a plurality of locations and calculating a distance from each of the plurality of locations to each of the plurality of APs; calculate a measurement error for each of the plurality of the calculated distances; for each location, determine a probability of measurement error as a function of both presence and absence of an outlier AP; for each location, sum the probability of measurement errors for the plurality of APs; and select the location with the highest probability of measurement error sum as an estimated device location.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, a first wireless station may be configured to transmit an FTM request message to a second wireless station; to transmit a first Non Data Packet (NDP) to the second wireless station; to process an FTM response message from the second wireless station; and to process a second NDP from the second wireless station.
Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of Angle of Departure (AoD) estimation. For example, an apparatus may include circuitry and logic configured to cause a wireless station to determine a beamforming scheme configured for AoD estimation, the beamforming scheme including a plurality of beamforming settings to be applied to a respective plurality of antennas, the beamforming scheme configured to transmit a plurality of tones in a plurality of directions such that a direction may be associated with at least one tone of the plurality of tones; and to sequentially transmit a plurality of transmissions according to the beamforming scheme, a transmission of the plurality of transmissions comprising a transmission via one or more antennas of the plurality of antennas according to one or more beamforming settings corresponding to the one or more antennas.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, a first wireless station may be configured to transmit an FTM request message to a second wireless station; to transmit a first Non Data Packet (NDP) to the second wireless station; to process an FTM response message from the second wireless station; and to process a second NDP from the second wireless station.
Abstract:
Improved wireless network location techniques are described. In one embodiment, for example, an apparatus may comprise circuitry and a communications management module for execution on the circuitry to send a timing announcement element comprising a sounding preamble count parameter indicating a number of sounding preambles, send a null data element comprising a number of sounding preambles equal to the sounding preamble count parameter, receive timing reply information comprising the number of sounding preambles equal to the sounding preamble count parameter, and determine a time of flight based on the timing reply information. Other embodiments are described and claimed.
Abstract:
Embodiments of a communication station and method for transmission power control for Time-of-Flight (ToF) measurements in a wireless network are generally described herein. A protocol for fine timing measurements (FTMs) optimizes location performance rather than Wi-Fi coverage area and bit error rate by limiting an allowed maximum power and hence, EVM. A user equipment (UE) comprises a transceiver configured to receive, from an initiating station, a fine timing measurement request (FTMR) message at a maximum transmit power and lowest modulation and coding scheme (MCS), measure a relative received signal strength (RSSI) for the received FTMR message, determine a maximum transmit power, where the maximum transmit power is proportional to the measured RSSI; and transmit, to the initiating station, a fine timing measurement 1 (FTM1) message at the determined maximum transmit power and received lowest MCS.